Establishing news credibility using sentiment analysis on twitter

被引:0
|
作者
Sharf Z. [1 ,3 ]
Jalil Z. [2 ]
Amir W. [2 ]
Siddiqui N. [3 ]
机构
[1] Department of Computer Science, SZABIST, Karachi
[2] Department of Computer Science, International Islamic University Islamabad, Islamabad
来源
International Journal of Advanced Computer Science and Applications | 2019年 / 10卷 / 09期
关键词
Opinion mining; Sentiment analysis; Tweets;
D O I
10.14569/ijacsa.2019.0100927
中图分类号
学科分类号
摘要
The widespread use of Internet has resulted in a massive number of websites, blogs and forums. People can easily discuss with each other about different topics and products, and can leave reviews to help out others. This automatically leads to a necessity of having a system that may automatically extract opinions from those comments or reviews to perform a strong analysis. So, it may help out businesses to know the opinions of people about their products/services so they can make further improvements. Sentiment Analysis or Opinion Mining is the system that intelligently performs classification of sentiments by extracting those opinions or sentiments from the given text (or comments or reviews). This paper presents a thorough research work carried out on tweets' sentiment analysis. An area-specific analysis is done to determine the polarity of extracted tweets for make an automatic classification that what recent news people have liked or disliked. The research is further extended to perform retweet analysis to describe the re-distribution of reactions on a specific twitter post (or tweet). © 2018 The Science and Information (SAI) Organization Limited.
引用
收藏
页码:209 / 221
页数:12
相关论文
共 50 条
  • [31] Sentiment Analysis in Twitter using Machine Learning Techniques
    Neethu, M. S.
    Rajasree, R.
    2013 FOURTH INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATIONS AND NETWORKING TECHNOLOGIES (ICCCNT), 2013,
  • [32] Imbalanced Twitter Sentiment Analysis using Minority Oversampling
    Ghosh, Kushankur
    Banerjee, Arghasree
    Chatterjee, Sankhadeep
    Sen, Soumya
    2019 IEEE 10TH INTERNATIONAL CONFERENCE ON AWARENESS SCIENCE AND TECHNOLOGY (ICAST 2019), 2019, : 384 - 388
  • [33] Twitter Opinion Mining and Boosting Using Sentiment Analysis
    Geetha, R.
    Rekha, Pasupuleti
    Karthika, S.
    2018 2ND INTERNATIONAL CONFERENCE ON COMPUTER, COMMUNICATION, AND SIGNAL PROCESSING (ICCCSP): SPECIAL FOCUS ON TECHNOLOGY AND INNOVATION FOR SMART ENVIRONMENT, 2018, : 174 - 177
  • [34] Twitter Sentiment Analysis Using Machine Learning Techniques
    Le, Bac
    Huy Nguyen
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING, 2015, 358 : 279 - 289
  • [35] Twitter Sentiment Analysis using Deep Learning Methods
    Ramadhani, Adyan Marendra
    Goo, Hong Soon
    2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 100 - 103
  • [36] Sentiment Analysis Framework of Twitter Data Using Classification
    Khurana, Medha
    Gulati, Anurag
    Singh, Saurabh
    2018 FIFTH INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED AND GRID COMPUTING (IEEE PDGC), 2018, : 459 - 464
  • [37] Sentiment Analysis On Twitter Data Using Distributed Architecture
    Karhan, Zebra
    Soysaldi, Meryem
    Ozben, Yagiz Ozgenc
    Kilic, Erdal
    2018 3RD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ENGINEERING (UBMK), 2018, : 357 - 360
  • [38] Sentiment Analysis of the Uri Terror Attack Using Twitter
    Garg, Pulkit
    Garg, Himanshu
    Ranga, Virender
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION AND AUTOMATION (ICCCA), 2017, : 17 - 20
  • [39] Twitter Sentiment Analysis Using Binary Classification Technique
    Supriya, B. N.
    Kallimani, Vish
    Prakash, S.
    Akki, C. B.
    NATURE OF COMPUTATION AND COMMUNICATION (ICTCC 2016), 2016, 168 : 391 - 396
  • [40] Using Sentiment Analysis to Determine Users' Likes on Twitter
    Hlongwane, Nontobeko
    Huang, Yo-Ping
    Kao, Li-Jen
    2018 16TH IEEE INT CONF ON DEPENDABLE, AUTONOM AND SECURE COMP, 16TH IEEE INT CONF ON PERVAS INTELLIGENCE AND COMP, 4TH IEEE INT CONF ON BIG DATA INTELLIGENCE AND COMP, 3RD IEEE CYBER SCI AND TECHNOL CONGRESS (DASC/PICOM/DATACOM/CYBERSCITECH), 2018, : 1068 - 1073