Analytical approach to higher-order correlation functions in U(1) symmetric systems

被引:0
作者
Lu Z.-G. [1 ]
Shang C. [2 ]
Wu Y. [1 ]
Lü X.-Y. [1 ]
机构
[1] School of Physics, Huazhong University of Science and Technology, Wuhan
[2] Department of Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba
基金
中国国家自然科学基金;
关键词
Compendex;
D O I
10.1103/PhysRevA.108.053703
中图分类号
学科分类号
摘要
We derive a compact analytical solution of the nth-order equal-time correlation functions by using scattering matrix (S matrix) under a weak coherent state input. Our solution applies to any dissipative quantum system that respects the U(1) symmetry. We further extend our analytical solution into two categories depending on whether the input and output channels are identical. The first category provides a different path for studying cross-correlation and multiple-drive cases, while the second category is instrumental in studying waveguide quantum electrodynamics systems. Our analytical solution allows for easy investigation of the statistical properties of multiple photons even in complex systems. Furthermore, we have developed a user-friendly open-source library in Python known as the quantum correlation solver, and this tool provides a convenient means to study various dissipative quantum systems that satisfy the above-mentioned criteria. Our study enables using S matrix to study the photonic correlation and advance the possibilities for exploring complex systems. © 2023 American Physical Society.
引用
收藏
相关论文
共 99 条
  • [1] Peskin M. E., Schroeder D. V., An Introduction To Quantum Field Theory, (1995)
  • [2] Pathria R. K, Statistical Mechanics, (1996)
  • [3] Scully M. O., Zubairy M. S., Quantum Optics, (1997)
  • [4] Wang H., Qin J., Ding X., Chen M.-C., Chen S., You X., He Y.-M., Jiang X., You L., Wang Z., Schneider C., Renema J. J., Hofling S., Lu C.-Y., Pan J.-W., Boson sampling with 20 input photons and a 60-mode interferometer in a (Equation presented)-dimensional hilbert space, Phys. Rev. Lett, 123, (2019)
  • [5] Uppu R., Pedersen F. T., Wang Y., Olesen C. T., Papon C., Zhou X., Midolo L., Scholz S., Wieck A. D., Ludwig A., Lodahl P., Scalable integrated single-photon source, Sci. Adv, 6, (2020)
  • [6] Shang C., Coupling enhancement and symmetrization of single-photon optomechanics in open quantum systems
  • [7] Metelmann A., Clerk A. A., Nonreciprocal photon transmission and amplification via reservoir engineering, Phys. Rev. X, 5, (2015)
  • [8] Lecocq F., Ranzani L., Peterson G. A., Cicak K., Simmonds R. W., Teufel J. D., Aumentado J., Nonreciprocal microwave signal processing with a field-programmable josephson amplifier, Phys. Rev. Appl, 7, (2017)
  • [9] Peterson G. A., Lecocq F., Cicak K., Simmonds R. W., Aumentado J., Teufel J. D., Demonstration of efficient nonreciprocity in a microwave optomechanical circuit, Phys. Rev. X, 7, (2017)
  • [10] Barzanjeh S., Aquilina M., Xuereb A., Manipulating the flow of thermal noise in quantum devices, Phys. Rev. Lett, 120, (2018)