Revised assignments of the v4=1 vibrational level of CH35Cl3: The ν4 and ν4-ν3 rovibrational bands with remarkable clustering effects

被引:0
作者
Ceausu-Velcescu A. [1 ]
Manceron L. [2 ,3 ]
Beckers H. [4 ]
Ghesquiere P. [5 ]
Pracna P. [6 ]
机构
[1] Université de Perpignan, LAMPS, 52 Avenue Paul Alduy, Perpignan
[2] Ligne AILES, Synchrotron SOLEIL, L'Orme des Merisiers, St-Aubin BP48, Gif-sur-Yvette
[3] Sorbonne Université, CNRS, MONARIS, UMR 8233, 4 Place Jussieu, Paris
[4] Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstrasse 34-36, Berlin
[5] Manufacture Française des Pneumatiques Michelin, Center de Technologie de Ladoux, Rue Orange, Cébazat
[6] Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, Prague 6
关键词
Chloroform; Difference band; Excited vibrational states; High-resolution infrared spectroscopy;
D O I
10.1016/j.jqsrt.2022.108077
中图分类号
学科分类号
摘要
The v4 = 1 fundamental vibration of chloroform (C-H bending vibration, E symmetry) has been reinvestigated at high-resolution. For this purpose, FTIR spectra recorded in the regions of the ν4 (1220 cm−1) and ν4 − ν3 (853 cm−1) bands were employed. Spectra were recorded at the Synchrotron Soleil, using a monoisotopic CH35Cl3 sample. More than 6900 transitions were assigned, among which more than 4200 in the difference band. Assignments span the 0 ≤ J ≤ 100 and − 75 ≤ K′′ΔK ≤ 75 values, despite the systematic overlaps of transitions, observed over a wide range of the spectrum. These overlaps, giving rise to remarkable clustering effects, are characteristic of both the fundamental ν4 and the difference ν4-ν3 bands. They are also, sometimes, source of misassignments, especially when the systematic use of the lower state combination differences as a checking is not possible. In this regard, we have to notice here that the indirect assignment checking through fundamental and difference transitions sharing a common upper level allowed us to systematically correct and extend the K-assignments of the rRK(J) transitions in the ν4 band. In the least-squares fit, the ground state parameters were fixed to the most recent experimental values. The parameters of the v3 = 1 level could be refined and improved with respect to previous determination, thanks to about 800 IR data collected from a FTIR spectrum of the ν3 band, together with more than 1300 MMW data in the v3 = 1 level (22 ≤ J ≤ 98 and 0 ≤ K ≤ 79). The theoretical model used for the v4 = 1 fundamental vibration is that of an isolated vibrational level, and ten molecular parameters were refined; the global standard deviation of the fit was of 0.160 × 10−3 cm−1, which is of the order of the accuracy of the experimental data. © 2022 Elsevier Ltd
引用
收藏
相关论文
共 14 条
  • [1] Anttila R., Alanko S., Horneman V.M., The C-H bending vibration ν<sub>4</sub> of chloroform CH<sup>35</sup>Cl<sub>3</sub>, Mol Phys, 102, pp. 1537-1542, (2004)
  • [2] Pietila J., Alanko S., Horneman V.M., Anttila R., High-resolution infrared studies of ν<sub>1</sub>, 2ν<sub>1</sub>, and 2ν<sub>4</sub> bands of CH<sup>35</sup>Cl<sub>3</sub>, J Mol Spectrosc, 216, pp. 271-283, (2002)
  • [3] Pietila J., Horneman V.M., Anttila R., Lemoine B., Reynaud F., Colmont J.M., The perpendicular fundamental ν<sub>5</sub> of chloroform <sup>12</sup>CH<sup>35</sup>Cl<sub>3</sub>: high resolution infrared study of the ν<sub>5</sub> band together with the millimetre-wave rotational spectrum, Mol Phys, 98, pp. 549-557, (2000)
  • [4] Faye M., Bordessoule M., Kanoute B., Brubach J.B., Roy P., Manceron L., Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use, Rev Sci Inst, 87, (2016)
  • [5] Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Campargue A., Champion J.P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.M., Gamache R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simeckova M., Smith M.A.H., Sung K., Tashk
  • [6] Fubeta W., Weizbauer S., Anharmonische Konstanten von SiHCl<sub>3</sub> und CHCl<sub>3</sub>, Ber Bunsenges Phys Chem, 99, pp. 289-295, (1995)
  • [7] Pietila J., Horneman V.M., Anttila R., High-resolution infrared study of the parallel band ν<sub>3</sub> of chloroform CH<sup>35</sup>Cl<sub>3</sub>, Mol Phys, 96, pp. 1449-1456, (1999)
  • [8] Margules L., Demaison J., Pracna P., Rotational spectrum in the v<sub>6</sub>=1 and v<sub>3</sub>=1 levels of chloroform, J Mol Struct, 795, pp. 157-162, (2006)
  • [9] Ceausu-Velcescu A., Pracna P., Motiyenko R.A., Margules L., Rotational spectroscopy in the v<sub>3</sub>=v<sub>6</sub>=1 and v<sub>6</sub>=2 vibrational states of CH<sup>35</sup>Cl<sub>3</sub>, J Quant Spectrosc Radiat Transf, 250, (2020)
  • [10] Ceausu-Velcescu A., Pracna P., Margules L., Predoi-Cross A., Rotational spectrum of chloroform, “grass-roots among the forest of trees”: the v<sub>2</sub> = 1, v<sub>3</sub> = 2, v<sub>5</sub> = 1, and v<sub>6</sub> = 3 vibrational states of CH<sup>35</sup>Cl<sub>3</sub>, J Quant Spectrosc Radiat Transf, 276, (2021)