共 42 条
- [1] Zhu Y., Et al., Target-driven visual navigation in indoor scenes using deep reinforcement learning, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 3357-3364, (2017)
- [2] Gondara L., Medical image denoising using convolutional denoising autoencoders, Proc. IEEE 16th Int. Conf. Data Min. Workshops (ICDMW), pp. 241-246, (2016)
- [3] Theis L., Shi W., Cunningham A., Huszar F., Lossy Image Compression with Compressive Autoencoders, (2017)
- [4] Prakash B., Horton M., Waytowich N.R., Hairston W.D., Oates T., Mohsenin T., On the use of deep autoencoders for efficient embedded reinforcement learning, Proc. Great Lakes Symp. VLSI, pp. 507-512, (2019)
- [5] Kohl N., Stone P., Policy gradient reinforcement learning for fast quadrupedal locomotion, Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 3, pp. 2619-2624, (2004)
- [6] Ng A.Y., Et al., Autonomous inverted helicopter flight via reinforcement learning, Experimental Robotics IX. Berlin, Germany: Springer, pp. 363-372, (2006)
- [7] Singh S., Litman D., Kearns M., Walker M., Optimizing dialogue management with reinforcement learning: Experiments with the NJFun system, J. Artif. Intell. Res., 16, 1, pp. 105-133, (2002)
- [8] Silver D., Et al., Mastering the game of Go without human knowledge, Nature, 550, 7676, pp. 354-359, (2017)
- [9] Mnih V., Et al., Human-level control through deep reinforcement learning, Nature, 518, 7540, pp. 529-533, (2015)
- [10] Rusu A.A., Vecerik M., Rothorl T., Heess N., Pascanu R., Hadsell R., Sim-to-real robot learning from pixels with progressive nets, Proc. Conf. Robot Learn., pp. 262-270, (2017)