Hydrological Evaluation of Meandering River Restoration in Kushiro Wetland Using a Long Short-Term Memory (Lstm)Based Model for Groundwater Level Prediction

被引:0
|
作者
Yamaguchi, Takumi [1 ]
Miyamoto, Hitoshi [1 ]
Oishi, Tetsuya [2 ]
机构
[1] Department of Civil Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto-Ku, Tokyo,135-8548, Japan
[2] River Engineering Research Team, Civil Engineering Research Institute for Cold Region, Public Works Research Institute, 1-34 Hiragishi 1-Jo 3-Chome, Toyohira-Ku, Hokkaido, Sapporo,062-8602, Japan
来源
SSRN | 2022年
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Data driven - Data-driven AI model - Deep learning - Ground water level - Hydrological process - Importance analysis - Peat land - Variable importance analyse - Variable importances - Wetland restoration
引用
收藏
相关论文
共 3 条
  • [1] Memristor-Based Long and Short-Term Memory Network Models for Optimal Prediction in the IoT
    Sun, Junwei
    Cao, Yuhan
    Yue, Yi
    Wang, Yan
    Wang, Yanfeng
    IEEE Internet of Things Journal, 2024,
  • [2] Bi-directional Long Short Term Memory Neural Network for Short-Term Traffic Speed Prediction Using Gravitational Search Algorithm
    Naheliya, Bharti
    Redhu, Poonam
    Kumar, Kranti
    International Journal of Intelligent Transportation Systems Research, 2024,
  • [3] One Shot Model for COVID-19 Classification and Lesions Segmentation in Chest CT Scans Using Long Short-Term Memory Network with Attention Mechanism
    Ter-Sarkisov A.
    IEEE Intelligent Systems, 2022, 37 (03) : 54 - 64