Paper-based triboelectric nanogenerators and their applications: a review

被引:0
作者
Han‡ J. [1 ,2 ]
Xu‡ N. [1 ,3 ]
Liang Y. [1 ,4 ]
Ding M. [5 ]
Zhai J. [1 ,2 ,3 ]
Sun Q. [1 ,2 ,3 ]
Wang Z.L. [1 ,2 ,6 ]
机构
[1] Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing
[2] School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing
[3] Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning
[4] Qichen (Shanghai) Medical Co., Ltd., Shanghai
[5] College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha
[6] School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, 30332-0245, Georgia
基金
英国科研创新办公室; 中国国家自然科学基金;
关键词
energy harvesting; interaction; Internet of Things (IoT); P-TENGs; paper-based sensors; self-powered devices; triboelectric nanogenerator;
D O I
10.3762/BJNANO.12.12
中图分类号
学科分类号
摘要
The development of industry and of the Internet of Things (IoTs) have brought energy issues and huge challenges to the environment. The emergence of triboelectric nanogenerators (TENGs) has attracted wide attention due to their advantages, such as self-powering, lightweight, and facile fabrication. Similarly to paper and other fiber-based materials, which are biocompatible, biodegradable, environmentally friendly, and are everywhere in daily life, paper-based TENGs (P-TENGs) have shown great potential for various energy harvesting and interactive applications. Here, a detailed summary of P-TENGs with two-dimensional patterns and three-dimensional structures is reported. P-TENGs have the potential to be used in many practical applications, including self-powered sensing devices, human–machine interaction, electrochemistry, and highly efficient energy harvesting devices. This leads to a simple yet effective way for the next generation of energy devices and paper electronics. © 2021 Han et al.; licensee Beilstein-Institut. License and terms: see end of document.
引用
收藏
页码:151 / 171
页数:20
相关论文
共 165 条
[71]  
Zhang W., Guo R., Sun J., Dang L., Liu Z., Lei Z., Sun Q., J. Colloid Interface Sci, 553, pp. 705-712, (2019)
[72]  
Guo L., Zhong C., Cao J., Hao Y., Lei M., Bi K., Sun Q., Wang Z. L., Nano Energy, 62, pp. 513-520, (2019)
[73]  
Kim H., Kim B. J., Sun Q., Kang M. S., Cho J. H., Adv. Electron. Mater, 2, (2016)
[74]  
Park J. H., Sun Q., Choi Y., Lee S., Lee D. Y., Kim Y. H., Cho J. H., ACS Appl. Mater. Interfaces, 8, pp. 15543-15550, (2016)
[75]  
Sun Q., Seung W., Kim B. J., Seo S., Kim S.-W., Cho J. H., Adv. Mater. (Weinheim, Ger.), 27, pp. 3411-3417, (2015)
[76]  
Choi Y., Sun Q., Hwang E., Lee Y., Lee S., Cho J. H., ACS Nano, 9, pp. 4354-4361, (2015)
[77]  
Sun Q., Lee S. J., Kang H., Gim Y., Park H. S., Cho J. H., Nanoscale, 7, pp. 6798-6804, (2015)
[78]  
Sun Q., Kim D. H., Park S. S., Lee N. Y., Zhang Y., Lee J. H., Cho K., Cho J. H., Adv. Mater. (Weinheim, Ger.), 26, pp. 4735-4740, (2014)
[79]  
Kim S., Choi Y. J., Woo H. J., Sun Q., Lee S., Kang M. S., Song Y. J., Wang Z. L., Cho J. H., Nano Energy, 50, pp. 598-605, (2018)
[80]  
Parandeh S., Kharaziha M., Karimzadeh F., Nano Energy, 59, pp. 412-421, (2019)