TiO2 nanorod/nanotube interface reconstruction and synergistic role of oxygen vacancies and gold in H–Au–TiO2 NR/NT for photoelectrochemical bacterial inactivation and water splitting

被引:2
作者
Mahadik M.A. [1 ]
Anushkkaran P. [2 ]
Chae W.-S. [3 ]
Lee H.H. [4 ]
Cho M. [1 ]
Jang J.S. [1 ,2 ]
机构
[1] Division of Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan
[2] Department of Integrative Environmental Biotechnology, Safety, Environment and Life Science Institute, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan
[3] Daegu Center, Korea Basic Science Institute, Daegu
[4] Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang
基金
新加坡国家研究基金会;
关键词
Interface reconstruction; Oxygen vacancies and gold; TiO[!sub]2[!/sub] anodization; Wastewater treatment;
D O I
10.1016/j.chemosphere.2023.139968
中图分类号
学科分类号
摘要
Photoelectrochemical (PEC) water splitting by semiconductor photoanodes is limited by sluggish water oxidation kinetics coupled with serious charge recombinations. In this paper, an effective strategy of TiO2 nanorod/nanotube nanostructured interface reconstruction, oxygen vacancies and surface modification were employed for stability and efficient charge transport in the photoanodes. Successive anodization and hydrothermal routes were adopted for the TiO2 NR/NT photoanodes interface reconstruction, followed by Au nanoparticles/clusters (Au NP) loading and hydrogen treatment. This resulted in H–Au–TiO2 NR/NT photoanodes. A three-dimensional structure of TiO2 NR on TiO2 NT/Ti foil nanotubes achieved the highest photocurrent density (1.42 mA cm−2 at 0.3 V vs. Ag/AgCl). The optimal oxygen vacancies and Au NP loading on TiO2 NR/NT exhibited 1.62 mA cm−2 photocurrent density at 0.3 V vs. Ag/AgCl in H–Au–TiO2 NR/NT photoelectrode, which is eight times higher than the TiO2 NT/Ti foil. TRPL analyses confirm the hydrogen treatments to TiO2 exhibited the emission lifetime (46 ns) in the H–Au–TiO2 NR/NT photoanodes due to newly formed lower Ti3+-related trapped electron states and Au NP. The optimum H–Au (4)–TiO2 NR/NT photoanodes achieved 95% photoelectrochemical (PEC) bacterial inactivation and effective PEC water splitting with (278 and 135.4) μmol of hydrogen and oxygen generation, respectively. In this study, oxygen vacancies combined with gold particles and interface reconstruction provide an innovative way to design effective photoelectrodes. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 61 条
[1]  
Adak D., Chakrabarty P., Majumdar P., Mukherjee R., Patra S., Mondal A., Bhattacharyya S., Saha H., Bhattacharyya R., Pd nanoparticle-decorated hydrogen plasma-treated TiO<sub>2</sub> for photoelectrocatalysis-based solar energy devices, ACS Appl. Electron. Mater., 2, pp. 3936-3945, (2020)
[2]  
Albu S.P., Tsuchiya H., Fujimoto S., Schmuki P., TiO<sub>2</sub> nanotubes – annealing effects on detailed morphology and structure, Eur. J. Inorg. Chem., pp. 4351-4356, (2010)
[3]  
Anushkkaran P., Mahadik M.A., Hwang J.B., Kim S., Chae W.S., Lee H.H., Choi S.H., Jang J.S., Synchronized effect of in-situ Ti doping and microwave-assisted SiO<sub>x</sub> hole transport channel on ZnFe<sub>2</sub>O<sub>4</sub> nanocoral arrays for efficient photoelectrochemical water splitting, Appl. Surf. Sci., 592, (2022)
[4]  
Anushkkaran P., Koh T.S., Chae W.S., Lee H.H., Choi S.H., Jang J.S., Unveiling the synchronized effect of bulk and surface dual modification of in situ Nb-doping and microwave-assisted Co(OH)<sub>x</sub> cocatalyst for boosting photoelectrochemical water splitting of Fe<sub>2</sub>O<sub>3</sub> photoanodes, ACS Sustain. Chem. Eng., 11, pp. 5895-5907, (2023)
[5]  
Anushkkaran P., Mahadik M.A., Chae W.S., Lee H.H., Choi S.H., Jang J.S., Tuning the surface states by in-situ Zr/Hf co-doping and MoO<sub>3</sub> hole transport layer modification for boosting photoelectrochemical performance of hematite photoanode, Chem. Eng. J., 472, (2023)
[6]  
Arora I., Chawla H., Chandra A., Sagadevan S., Garg S., Advances in the strategies for enhancing the photocatalytic activity of TiO<sub>2</sub>: conversion from UV-light active to visible-light active photocatalyst, Inorg. Chem. Commun., 143, (2022)
[7]  
Ayati A., Ahmadpour A., Bamoharram F.F., Tanhaei B., Manttari M., Sillanpaa M., A review on catalytic applications of Au/TiO<sub>2</sub> nanoparticles in the removal of water pollutant, Chemosphere, 107, pp. 163-174, (2014)
[8]  
Chen X.B., Liu L., Yu P.Y., Mao S.S., Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals, Science, 331, (2011)
[9]  
Cheng X., Dong G., Zhang Y., Feng C., Bi Y., Dual-bonding interactions between MnO<sub>2</sub> cocatalyst and TiO<sub>2</sub> photoanodes for efficient solar water splitting, Appl. Catal., B, 267, (2020)
[10]  
Cottineau T., Cachet H., Keller V., Sutter E.M.M., Influence of the anatase/rutile ratio on the charge transport properties of TiO<sub>2</sub>-NTs arrays studied by dual wavelength opto-electrochemical impedance spectroscopy, Phys. Chem. Chem. Phys., 19, pp. 31469-31478, (2017)