共 24 条
[1]
Beale J. T., Large-time regularity of viscous surface waves, Arch. Ration. Mech. Anal, 84, pp. 307-352, (1983)
[2]
Budzinski R. C., Nguyen T. T., Benigno G. B., Doan J., Minac Jan, Sejnowski T. J., Et al., Analytical prediction of specific spatiotemporal patterns in nonlinear oscillator networks with distance-dependent time delay, Phys. Rev. Lett, 5, (2023)
[3]
Chapeau-Blondeau F., Chauvet G., Stable, oscillatory, and chaotic regimes in the dynamics of small neural networks with delay, Neural Netw, 5, pp. 735-743, (1992)
[4]
Chiba H., A proof of the Kuramoto conjecture for a bifurcation structure of the infinite dimensional Kuramoto model, Ergod. Theory Dyn. Syst, 35, pp. 762-834, (2015)
[5]
Choi M. Y., Kim H. J., Kim D., Hong H., Synchronization in a system of globally coupled oscillators with time delay, Phys. Rev. E, 61, pp. 371-381, (2000)
[6]
Crawford J. D., Amplitude expansions for instabilities in populations of Globally-Coupled oscillators, J. Stat. Phys, 74, pp. 1047-1082, (1994)
[7]
Ha S. Y., Xiao Q., Remarks on the nonlinear stability of the Kuramoto-Sakaguchi equation, J. Diff. Eq, 259, pp. 2430-2457, (2015)
[8]
Ha S. Y., Xiao Q., Nonlinear instability of the incoherent state for the Kuramoto-Sakaguchi-Fokker-Plank equation, J. Stat. Phys, 160, pp. 477-496, (2015)
[9]
Honda H., Tani A., Mathematical analysis of synchronization from the perspective of network science, Mathematical Analysis of Continuum Mechanics and Industrial Applications (Proceedings of the International Conference CoMFoS15), (2017)
[10]
Honda H., Global-in-time solution and stability of Kuramoto-Sakaguchi equation under non-local coupling, Netwo. Heterog. Media, 12, pp. 25-57, (2017)