Residual wide-kernel deep convolutional auto-encoder for intelligent rotating machinery fault diagnosis with limited samples

被引:0
|
作者
Yang, Daoguang [1 ]
Karimi, Hamid Reza [1 ]
Sun, Kangkang [1 ]
机构
[1] Department of Mechnical Engineering, Politecnico di Milano, Milan, Italy
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:133 / 144
相关论文
共 50 条
  • [21] Application of Kernel Auto-encoder Based on Firefly Optimization in Intershaft Bearing Fault Diagnosis
    Wang F.
    Liu X.
    Dun B.
    Deng G.
    Han Q.
    Li H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (07): : 58 - 64
  • [22] Intelligent fault diagnosis of automobile main reducer based onstacked convolutional auto-encoder and parallel attention-based convolutional blocks
    Ye, Qing
    Liu, Changhua
    APPLIED INTELLIGENCE, 2025, 55 (01)
  • [23] Automatic Power Quality Disturbance Diagnosis Based on Residual Denoising Convolutional Auto-Encoder
    Liu, Jie
    Tang, Qiu
    Qiu, Wei
    Ma, Jun
    Qin, Yuhong
    Sun, Biao
    APPLIED SCIENCES-BASEL, 2021, 11 (16):
  • [24] A Wasserstein gradient-penalty generative adversarial network with deep auto-encoder for bearing intelligent fault diagnosis
    Xiong, Xiong
    Jiang, Hongkai
    Li, Xingqiu
    Niu, Maogui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (04)
  • [25] Intelligent fault diagnosis among different rotating machines using novel stacked transfer auto-encoder optimized by PSO
    Shao Haidong
    Ding Ziyang
    Cheng Junsheng
    Jiang Hongkai
    ISA TRANSACTIONS, 2020, 105 : 308 - 319
  • [26] One-dimensional residual convolutional auto-encoder for fault detection in complex industrial processes
    Yu, Jianbo
    Liu, Xing
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2022, 60 (18) : 5655 - 5674
  • [27] A New Deep Transfer Learning Based on Sparse Auto-Encoder for Fault Diagnosis
    Wen, Long
    Gao, Liang
    Li, Xinyu
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (01): : 136 - 144
  • [28] Mode-Decoupling Auto-Encoder for Machinery Fault Diagnosis Under Unknown Working Conditions
    An, Zenghui
    Jiang, Xingxing
    Liu, Jie
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (03) : 4990 - 5003
  • [29] Deep Fault Diagnosis for Rotating Machinery with Scarce Labeled Samples
    ZHANG Jing
    TIAN Jing
    WEN Tao
    YANG Xiaohui
    RAO Yong
    XU Xiaobin
    Chinese Journal of Electronics, 2020, 29 (04) : 693 - 704
  • [30] Deep Fault Diagnosis for Rotating Machinery with Scarce Labeled Samples
    Zhang, Jing
    Tian, Jing
    Wen, Tao
    Yang, Xiaohui
    Rao, Yong
    Xu, Xiaobin
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (04) : 693 - 704