The kernel rough k-means algorithm

被引:0
作者
Meng W. [1 ,2 ]
Hongyan D. [3 ]
Shiyuan Z. [1 ,2 ]
Zhankui D. [1 ]
Zige W. [1 ]
机构
[1] School of Business, Henan University, Jinming Road, Kaifeng
[2] Management Science and Engineering Institute, Henan University, Jinming Road, Kaifeng
[3] School of Management Engineering, Zhengzhou University, Zhengzhou
关键词
Big data; Clustering; K-Means; Kernel function; KRKM; Rough set;
D O I
10.2174/2213275912666190716121431
中图分类号
学科分类号
摘要
Background: Clustering is one of the most important data mining methods. The k-means (c-means) and its derivative methods are the hotspot in the field of clustering research in recent years. The clustering method can be divided into two categories according to the uncertainty, which are hard clustering and soft clustering. The Hard C-Means clustering (HCM) belongs to hard clustering while the Fuzzy C-Means clustering (FCM) belongs to soft clustering in the field of k-means clustering research respectively. The linearly separable problem is a big challenge to clustering and classification algorithm and further improvement is required in big data era. Objective: RKM algorithm based on fuzzy roughness is also a hot topic in current research. The rough set theory and the fuzzy theory are powerful tools for depicting uncertainty, which are the same in essence. Therefore, RKM can be kernelized by the mean of KFCM. In this paper, we put forward a Kernel Rough K-Means algorithm (KRKM) for RKM to solve nonlinear problem for RKM. KRKM expanded the ability of processing complex data of RKM and solve the problem of the soft clustering uncertainty. Methods: This paper proposed the process of the Kernel Rough K-Means algorithm (KRKM). Then the clustering accuracy was contrasted by utilizing the data sets from UCI repository. The experi-ment results shown the KRKM with improved clustering accuracy, comparing with the RKM algo-rithm. Results: The classification precision of KFCM and KRKM were improved. For the classification precision, KRKM was slightly higher than KFCM, indicating that KRKM was also an attractive al-ternative clustering algorithm and had good clustering effect when dealing with nonlinear clustering. Conclusion: Through the comparison with the precision of KFCM algorithm, it was found that KRKM had slight advantages in clustering accuracy. KRKM was one of the effective clustering algorithms that can be selected in nonlinear clustering. © 2020 Bentham Science Publishers.
引用
收藏
页码:234 / 239
页数:5
相关论文
共 50 条
  • [21] Adaptive K-Means clustering algorithm
    Chen, Hailin
    Wu, Xiuqing
    Hu, Junhua
    MIPPR 2007: PATTERN RECOGNITION AND COMPUTER VISION, 2007, 6788
  • [22] Interpretation and optimization of the k-means algorithm
    Sabo, Kristian
    Scitovski, Rudolf
    APPLICATIONS OF MATHEMATICS, 2014, 59 (04) : 391 - 406
  • [23] Implementation of K-means Algorithm on FGGA
    Altuncu, Mehmet Ali
    Turkoglu, Bahadir
    Cavuslu, Mehmet Ali
    Sahin, Suhap
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [24] Unsupervised K-Means Clustering Algorithm
    Sinaga, Kristina P.
    Yang, Miin-Shen
    IEEE ACCESS, 2020, 8 : 80716 - 80727
  • [25] An Enhancement of K-means Clustering Algorithm
    Gu, Jirong
    Zhou, Jieming
    Chen, Xianwei
    2009 INTERNATIONAL CONFERENCE ON BUSINESS INTELLIGENCE AND FINANCIAL ENGINEERING, PROCEEDINGS, 2009, : 237 - 240
  • [26] Levy-Cauchy arithmetic optimization algorithm combined with rough K-means for image segmentation
    Das, Arunita
    Namtirtha, Amrita
    Dutta, Animesh
    APPLIED SOFT COMPUTING, 2023, 140
  • [27] Global k-means plus plus : an effective relaxation of the global k-means clustering algorithm
    Vardakas, Georgios
    Likas, Aristidis
    APPLIED INTELLIGENCE, 2024, 54 (19) : 8876 - 8888
  • [28] Density K-means : A New Algorithm for Centers Initialization for K-means
    Lan, Xv
    Li, Qian
    Zheng, Yi
    PROCEEDINGS OF 2015 6TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE, 2015, : 958 - 961
  • [29] K-MEANS plus : A DEVELOPED CLUSTERING ALGORITHM FOR BIG DATA
    Niu, Kun
    Gao, Zhipeng
    Jiao, Haizhen
    Deng, Nanjie
    PROCEEDINGS OF 2016 4TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (IEEE CCIS 2016), 2016, : 141 - 144
  • [30] An Improved K-means Clustering Algorithm Based on Hadoop Platform
    Hou, Xiangru
    CYBER SECURITY INTELLIGENCE AND ANALYTICS, 2020, 928 : 1101 - 1109