Role of elastic phonon couplings in dictating the thermal transport across atomically sharp SiC/Si interfaces

被引:9
作者
He, Qinqin [1 ]
Xu, Yixin [1 ]
Wang, Haidong [2 ]
Li, Zhigang [1 ]
Zhou, Yanguang [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China
[2] Tsinghua Univ, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
关键词
ROOM-TEMPERATURE; CONDUCTANCE; SI; GROWTH;
D O I
10.1016/j.ijthermalsci.2024.109182
中图分类号
O414.1 [热力学];
学科分类号
摘要
The interfaces between SiC and the corresponding substrate largely affect the performance of SiC-based electronics. Understanding and designing the interfacial thermal transport across the SiC/substrate interfaces is critical for the thermal management design of these SiC-based power electronics. In this work, we systematically investigate the heat transfer across the 3C-SiC/Si, 4H-SiC/Si, and 6H-SiC/Si interfaces using non-equilibrium molecular dynamics simulations and diffuse mismatch model. We find that the room temperature ITC for 3C-SiC/Si, 4H-SiC/Si, and 6H-SiC/Si interfaces is 932 MW/m(2)K, 759 MW/m(2)K, and 697 MW/m(2)K, respectively, which is among the highest values for all interfaces made up of semiconductors (Yue et al., 2011; Cheng et al., 2020; Wilson et al., 2015; Ziade et al., 2015) [[1], [2], [3], [4]]. The ultrahigh ITC of SiC/Si heterointerfaces at room temperature and high temperatures results from the dictating elastic scatterings at interfaces. We further find the ITC contributed by the elastic scattering decreases with the temperature but remains at a high ratio of 67%-78% even at an ultrahigh temperature of 1000 K. The reason for such a high elastic ITC is the large overlap between the vibrational density of states of Si and SiC at low and middle frequencies (<similar to 18 THz), which is also demonstrated by the diffuse mismatch model.
引用
收藏
页数:11
相关论文
共 57 条
[1]   COMPARISON OF 6H-SIC, 3C-SIC, AND SI FOR POWER DEVICES [J].
BHATNAGAR, M ;
BALIGA, BJ .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (03) :645-655
[2]  
Bougrov V, 2001, PROPERTIES OF ADVANCED SEMICONDUCTOR MATERIALS: GAN, AIN, INN, BN, SIC, SIGE, P1
[3]   A microscopic formulation of the phonon transmission at the nanoscale [J].
Chalopin, Y. ;
Volz, S. .
APPLIED PHYSICS LETTERS, 2013, 103 (05)
[4]   High thermal conductivity in wafer-scale cubic silicon carbide crystals [J].
Cheng, Zhe ;
Liang, Jianbo ;
Kawamura, Keisuke ;
Zhou, Hao ;
Asamura, Hidetoshi ;
Uratani, Hiroki ;
Tiwari, Janak ;
Graham, Samuel ;
Ohno, Yutaka ;
Nagai, Yasuyoshi ;
Feng, Tianli ;
Shigekawa, Naoteru ;
Cahill, David G. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[5]   Experimental observation of localized interfacial phonon modes [J].
Cheng, Zhe ;
Li, Ruiyang ;
Yan, Xingxu ;
Jernigan, Glenn ;
Shi, Jingjing ;
Liao, Michael E. ;
Hines, Nicholas J. ;
Gadre, Chaitanya A. ;
Idrobo, Juan Carlos ;
Lee, Eungkyu ;
Hobart, Karl D. ;
Goorsky, Mark S. ;
Pan, Xiaoqing ;
Luo, Tengfei ;
Graham, Samuel .
NATURE COMMUNICATIONS, 2021, 12 (01)
[6]   Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices [J].
Cheng, Zhe ;
Mu, Fengwen ;
Yates, Luke ;
Suga, Tadatomo ;
Graham, Samuel .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (07) :8376-8384
[7]   Role of dispersion on phononic thermal boundary conductance [J].
Duda, John C. ;
Beechem, Thomas E. ;
Smoyer, Justin L. ;
Norris, Pamela M. ;
Hopkins, Patrick E. .
JOURNAL OF APPLIED PHYSICS, 2010, 108 (07)
[8]   Enhancing and tuning phonon transport at vibrationally mismatched solid-solid interfaces [J].
English, Timothy S. ;
Duda, John C. ;
Smoyer, Justin L. ;
Jordan, Donald A. ;
Norris, Pamela M. ;
Zhigilei, Leonid V. .
PHYSICAL REVIEW B, 2012, 85 (03)
[9]  
Enisherlova K.L., 2017, [Modern Electronic Materials, Modern Electronic Materials], V3, P50, DOI 10.1016/j.moem.2017.03.001
[10]   Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide [J].
Erhart, P ;
Albe, K .
PHYSICAL REVIEW B, 2005, 71 (03)