共 131 条
[61]
Zhang Y., Cai T., Yu S., Cho K., Hong C., Sun J., Huang J., Ho Y.-L., Ananthakrishnan A.N., Xia Z., Shaw S.Y., Gainer V., Castro V., Link N., Honerlaw J., Huang S., Gagnon D., Karlson E.W., Plenge R.M., Szolovits P., Savova G., Churchill S., O'Donnell C., Murphy S.N., Gaziano J.M., Kohane I., Cai T., Liao K.P., High-throughput phenotyping with electronic medical record data using a common semi-supervised approach (PheCAP), Nat. Protoc., 14, pp. 3426-3444, (2019)
[62]
Mikhael P.G., Wohlwend J., Yala A., Karstens L., Xiang J., Takigami A.K., Bourgouin P.P., Chan P., Mrah S., Amayri W., Juan Y.-H., Yang C.-T., Wan Y.-L., Lin G., Sequist L.V., Fintelmann F.J., Barzilay R., Sybil: a validated deep learning model to predict future lung cancer risk from a single low-dose chest computed tomography, J. Clin. Oncol., 41, pp. 2191-2200, (2023)
[63]
Saldanha O.L., Loeffler C.M.L., Niehues J.M., van Treeck M., Seraphin T.P., Hewitt K.J., Cifci D., Veldhuizen G.P., Ramesh S., Pearson A.T., Kather J.N., Self-supervised attention-based deep learning for pan-cancer mutation prediction from histopathology, npj Precis. Oncol., 7, (2023)
[64]
Rafiei F., Zeraati H., Abbasi K., Ghasemi J.B., Parsaeian M., Masoudi-Nejad A., DeepTraSynergy: drug combinations using multimodal deep learning with transformers, Bioinformatics, 39, (2023)
[65]
Bian Y., Zheng Z., Fang X., Jiang H., Zhu M., Yu J., Zhao H., Zhang L., Yao J., Lu L., Lu J., Shao C., Artificial intelligence to predict lymph node metastasis at CT in pancreatic ductal adenocarcinoma, Radiology, 306, pp. 160-169, (2022)
[66]
Huang Q., Wang D., Lu Z., Zhou S., Li J., Liu L., Chang C., A novel image-to-knowledge inference approach for automatically diagnosing tumors, Expert Syst. Appl., 229, (2023)
[67]
Dembrower K., Crippa A., Colon E., Eklund M., Strand F., Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study, The Lancet Digital Health, 5, pp. e703-e711, (2023)
[68]
Niehues J.M., Quirke P., West N.P., Grabsch H.I., van Treeck M., Schirris Y., Veldhuizen G.P., Hutchins G.G.A., Richman S.D., Foersch S., Brinker T.J., Fukuoka J., Bychkov A., Uegami W., Truhn D., Brenner H., Brobeil A., Hoffmeister M., Kather J.N., Generalizable biomarker prediction from cancer pathology slides with self-supervised deep learning: a retrospective multi-centric study, Cell Reports Med., 4, (2023)
[69]
Hundahl S.A., Fleming I.D., Fremgen A.M., Menck H.R., A National Cancer Data Base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985-1995, Cancer, 83, pp. 2638-2648, (1998)
[70]
Duggan M.A., Anderson W.F., Altekruse S., Penberthy L., Sherman M.E., The surveillance, epidemiology, and end results (SEER) program and pathology: toward strengthening the critical relationship, Am. J. Surg. Pathol., 40, (2016)