Pollution Characteristics,Sources,and Secondary Generation of Organic Acids in PM2.5 in Zhengzhou

被引:0
作者
Li Z.-H. [1 ]
Dong Z. [2 ]
Shang L.-Q. [1 ]
Kong Z.-H. [1 ]
Li X. [1 ]
Zhang R.-Q. [1 ]
机构
[1] School of Ecology and Environment, Zhengzhou University, Zhengzhou
[2] College of Chemistry, Zhengzhou University, Zhengzhou
来源
Huanjing Kexue/Environmental Science | 2024年 / 45卷 / 02期
关键词
dicarboxylic acids; fatty acid; gas-phase oxidation; secondary generation; secondary organic aerosol;
D O I
10.13227/j.hjkx.202301111
中图分类号
学科分类号
摘要
Organic acids in atmospheric particulate matter are widely involved in various physical and chemical reactions in the atmosphere and contribute greatly to the formation of secondary organic aerosols and haze pollutions. Therefore,the concentration distribution characteristics,sources,and secondary formation of organic acids in particulate matter are of great significance for further investigation of organic aerosols and their secondary transformation. Fine particulate matter(PM2. 5)samples were collected in Zhengzhou,and three types of organic acids,including dicarboxylic acids,fatty acids,and resin acids,were analyzed to explore their species distribution,seasonal variations,source contribution,and secondary generation. Malonic acid(di-C3)and succinate acid(di-C4)were the most abundant in the identified dicarboxylic acids,which showed obvious seasonal variations in the order of summer > autumn > winter > spring. Fatty acids had the highest concentration in winter and the lowest concentration in spring,showing obvious bimodal advantages,with the most abundant compounds being palmitic acid and stearic acid(C18). Principal component analysis and multiple linear regression(MLR)were used to analyze the source of organic acids in PM2. 5 in Zhengzhou;the results showed that 35% of the organic acids came from combustion and traffic sources,24% from cooking sources,23% from secondary formation,and 17% from natural sources. The ratios of the selected marker species(i. e. ,di-C3 / di-C4,F/M,and C18:1 / C18)were used as tracers for the secondary formation of the organic aerosol and its aging process. The results showed that the photochemical reaction was intense in summer,and the proportion of organic aerosol aging or secondary production was high,whereas the photochemical reaction was weak in winter,and the aging degree of organic aerosol was low. Correlation analysis and MLR were used in combination to quantify the relative contribution of gas-phase oxidation and liquid-phase oxidation to dicarboxylic acid formation,and the results showed that gas-phase oxidation played a dominant role in the sampling period(accounting for 58%),especially in summer(61%). © 2024 Science Press. All rights reserved.
引用
收藏
页码:700 / 708
页数:8
相关论文
共 47 条
[1]  
Menon S,, Hansen J,, Nazarenko L,, Et al., Climate effects of black carbon aerosols in China and India[J], Science, 297, 5590, pp. 2250-2253, (2002)
[2]  
Ho KF,, Huang RJ,, Kawamura K,, Et al., Dicarboxylic acids,ketocarboxylic acids,α -dicarbonyls,fatty acids and benzoic acid in PM<sub>2. 5</sub> aerosol collected during CAREBeijing-2007:an effect of traffic restriction on air quality[J], Atmospheric Chemistry and Physics, 14, 10, pp. 14855-14887, (2015)
[3]  
Xu S F., Molecular composition,size distributions and seasonal variation of urban organic aerosols in Beijing[D], (2019)
[4]  
Novakov T, Penner J E., Large contribution of organic aerosols to cloud-condensation nuclei concentrations[J], Nature, 365, 6449, pp. 823-826, (1993)
[5]  
Penner J E,, Chuang C C,, Grant K., Climate forcing by carbonaceous and sulfate aerosols[J], Climate Dynamics, 14, 12, pp. 839-851, (1998)
[6]  
Gundel L A, Dalsey J M,, De Carvalho L R F,, Et al., Polar organic matter in airborne particles: Chemical characterization and mutagenic activity[J], Environmental Science & Technology, 27, 10, pp. 2112-2119, (1993)
[7]  
Chebbi A,, Carlier P., Carboxylic acids in the troposphere,occurrence, sources, and sinks: a review [J], Atmospheric Environment, 30, 24, pp. 4233-4249, (1996)
[8]  
Guo H T, Zhou J B, Yu W Y,, Et al., Seasonal variation and source of carboxylic acids in PM<sub>2. 5</sub> in Wuhan,China[J], Environmental Science & Technology, 37, 4, pp. 90-95, (2014)
[9]  
Zeng X., Composition and DNA damage capacities of organic aerosols from typical emission sources and urban air environment [D], (2021)
[10]  
Yu Q,, Chen J,, Cheng S M,, Et al., Seasonal variation of dicarboxylic acids in PM<sub>2. 5</sub> in Beijing: Implications for the formation and aging processes of secondary organic aerosols[J], Science of the Total Environment, (2021)