Possible depth-resolved reconstruction of shear moduli in the cornea following collagen crosslinking (CXL) with optical coherence tomography and elastography

被引:8
作者
Regnault G. [1 ]
Kirby M.A. [1 ]
Wang R.K. [1 ,2 ]
Shen T.T. [2 ,3 ]
O’Donnell M. [1 ]
Pelivanov I. [1 ]
机构
[1] Department of Bioengineering, University of Washington, Seattle, WA
[2] Department of Ophthalmology, University of Washington, Seattle, WA
[3] School of Medicine, University of Washington, Seattle, WA
基金
美国国家卫生研究院;
关键词
All Open Access; Gold;
D O I
10.1364/BOE.497970
中图分类号
学科分类号
摘要
Corneal collagen crosslinking (CXL) is commonly used to prevent or treat keratoconus. Although changes in corneal stiffness induced by CXL surgery can be monitored with non-contact dynamic optical coherence elastography (OCE) by tracking mechanical wave propagation, depth dependent changes are still unclear if the cornea is not crosslinked through the whole depth. Here, phase-decorrelation measurements on optical coherence tomography (OCT) structural images are combined with acoustic micro-tapping (AµT) OCE to explore possible reconstruction of depth-dependent stiffness within crosslinked corneas in an ex vivo human cornea sample. Experimental OCT images are analyzed to define the penetration depth of CXL into the cornea. In a representative ex vivo human cornea sample, crosslinking depth varied from ∼100 µm in the periphery to ∼150 µm in the cornea center and exhibited a sharp in-depth transition between crosslinked and untreated areas. This information was used in an analytical two-layer guided wave propagation model to quantify the stiffness of the treated layer. We also discuss how the elastic moduli of partially CXL-treated cornea layers reflect the effective engineering stiffness of the entire cornea to properly quantify corneal deformation. © 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement.
引用
收藏
页码:5005 / 5021
页数:16
相关论文
共 83 条
[1]  
Sridhar M., Anatomy of cornea and ocular surface, Indian J. Ophthalmol, 66, 2, (2018)
[2]  
Meek K. M., Boote C., The organization of collagen in the corneal stroma, Exp. Eye Res, 78, 3, pp. 503-512, (2004)
[3]  
Borcherding M. S., Blacik L. J., Sittig R. A., Bizzell J. W., Breen M., Weinstein H. G., Proteoglycans and collagen fibre organization in human corneoscleral tissue, Exp. Eye Res, 21, 1, pp. 59-70, (1975)
[4]  
Meek K. M., Knupp C., Corneal structure and transparency, Prog. Retinal Eye Res, 49, pp. 1-16, (2015)
[5]  
Hashemi H., Heydarian S., Hooshmand E., Saatchi M., Yekta A., Aghamirsalim M., Valadkhan M., Mortazavi M., Hashemi A., Khabazkhoob M., The prevalence and risk factors for keratoconus: a systematic review and meta-analysis, Cornea, 39, 2, pp. 263-270, (2020)
[6]  
Wollensak G., Spoerl E., Seiler T., Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus, Am. J. Ophthalmol, 135, 5, pp. 620-627, (2003)
[7]  
Hersh P. S., Stulting R. D., Muller D., Durrie D. S., Rajpal R. K., Binder P. S., Donnenfeld E. D., Durrie D., Hardten D., Hersh P., Price F., Schanzlin D., Stark W., Stulting R. D., Trattler W., Trokel S., United States multicenter clinical trial of corneal collagen crosslinking for keratoconus treatment, Ophthalmology, 124, 9, pp. 1259-1270, (2017)
[8]  
Goldich Y., Marcovich A. L., Barkana Y., Mandel Y., Hirsh A., Morad Y., Avni I., Zadok D., Clinical and corneal biomechanical changes after collagen cross-linking with riboflavin and UV irradiation in patients with progressive keratoconus: results after 2 years of follow-up, Cornea, 31, 6, pp. 609-614, (2012)
[9]  
Wollensak G., Iomdina E., Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking, Acta Ophthalmol, 87, 1, pp. 48-51, (2009)
[10]  
Maier P., Reinhard T., Kohlhaas M., Corneal collagen cross-linking in the stabilization of keratoconus, Dtsch Arztebl Int, 116, 11, pp. 184-190, (2019)