Combining solutions of the optimum satisfiability problem using evolutionary tunneling

被引:0
作者
da Silva R.F. [1 ]
Hvattum L.M. [2 ]
Glover F. [3 ]
机构
[1] Universidade Federal de Minas Gerais, Belo Horizonte
[2] Faculty of Logistics, Molde University College, Molde
[3] Meta-Analytics, Inc., Boulder, CO
来源
Hvattum, Lars Magnus (hvattum@himolde.no) | 1600年 / Brno University of Technology卷 / 26期
关键词
Adaptive memory programming; Boolean optimization; Metaheuristic; Recombination operator; Tabu search; Zero-one integer programming;
D O I
10.13164/mendel.2020.1.007
中图分类号
学科分类号
摘要
The optimum satisfiability problem involves determining values for Boolean variables to satisfy a Boolean expression, while maximizing the sum of coefficients associated with the variables chosen to be true. Existing literature has identified a tabu search heuristic as the best method to deal with hard instances of the problem. This paper combines the tabu search with a simple evolutionary heuristic based on the idea of tunneling between local optima. When combining a set of solutions, variables with common values in all solutions are identified and fixed. The remaining free variables in the problem may be decomposed into several independent subproblems, so that parts of the solutions combined can be extracted and combined in an improved solution. This solution can be further improved by applying the tabu search in an improvement stage. The value of the new heuristic is demonstrated in extensive computational experiments on both existing and new test instances. © 2020, Brno University of Technology. All rights reserved.
引用
收藏
页码:7 / 13
页数:6
相关论文
共 19 条
[11]  
Hvattum L., Lokketangen A., Glover F., Adaptive memory search for boolean optimization problems, Discrete Applied Mathematics, 142, pp. 99-109, (2004)
[12]  
Hvattum L., Lokketangen A., Glover F., New heuristics and adaptive memory procedures for boolean optimization problems, Integer Programming: Theory and Practice, pp. 1-18, (2006)
[13]  
Hvattum L., Lokketangen A., Glover F., Comparisons of commercial MIP solvers and an adaptive memory (tabu search) procedure for a class of 0–1 integer programming problems, Algorithmic Operations Research, 7, pp. 13-21, (2012)
[14]  
Koch T., Achterberg T., Andersen E., Bastert O., Berthold T., Bixby R., Danna E., Gamrath G., Gleixner A., Heinz S., Lodi A., Mittelmann H., Ralphs T., Salvagnin D., Steffy D., Wolter K., MIPLIB 2010-mixed integer programming library version 5, Mathematical Programming Computation, 3, pp. 103-163, (2011)
[15]  
Lodi A., MIP computation and beyond, (2008)
[16]  
Lokketangen A., Glover F., Surrogate constraint analysis — new heuristics and learning schemes for satisfiability problems, Satisfiability Problem: Theory and Applications, 35, (1997)
[17]  
Lokketangen A., Olsson R., Generating meta-heuristic optimization code using ADATE, Journal of Heuristics, 16, pp. 911-930, (2010)
[18]  
Selman B., Mitchell D., Levesque H., Generating hard satisfiability problems, Artificial Intelligence, 81, pp. 17-29, (1996)
[19]  
Whitley D., Next generation genetic algorithms: a user’s guide and tutorial, Handbook of Metaheuristics, 272, pp. 245-274, (2019)