A comparative study on the composite cathodes with proton conductor and oxygen ion conductor for proton-conducting solid oxide fuel cell

被引:48
作者
Xie D. [1 ]
Ling A. [1 ]
Yan D. [1 ]
Jia L. [1 ]
Chi B. [1 ]
Pu J. [1 ]
Li J. [1 ]
机构
[1] Center for Fuel Cell Innovation, School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan
基金
中国国家自然科学基金;
关键词
Composite cathode; Distribution of relaxation time; Electrochemical performance; Oxygen reduction reaction; Proton-conducting solid oxide fuel cell;
D O I
10.1016/j.electacta.2020.136143
中图分类号
学科分类号
摘要
Proton-conducting solid oxide fuel cell (H–SOFC) is more competitive compared to oxygen-conducting SOFC (O–SOFC) due to its lower conductive activation energy, higher fuel conversion rate, and higher Nernst potential. However lack of suitable cathode is hindering its application. A double perovskite Nd(Ba0·75Ca0.25)Co1·5Fe0·4Ni0·1O5+δ (NBCCFN) has been prepared and evaluated as a potential cathode with a peak power density of 882.2 mW cm−2 for the anode supported single cell with NBCCFN-based composite cathode. NBCCFN exhibits high electrical conductivity, high oxygen vacancies and lower thermal expansion coefficient. Single cell in which the cathode is composited with Gd0.1Ce0·9O2-δ (GDC) presents lower the polarization resistances and higher the peak power densities than that with BaZr0·1Ce0·7Y0.1Yb0.1O3-δ (BZCYYb). Our results and corresponding distribution of relaxation time (DRT) analysis suggest that enhancing the oxygen reduction and diffusion processes of cathode is an effective way to improve the performance of H–SOFC. © 2020 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes
    Bi, Lei
    Shafi, Shahid P.
    Da'as, Eman Husni
    Traversa, Enrico
    SMALL, 2018, 14 (32)
  • [22] High performance of proton-conducting solid oxide fuel cell with a layered PrBaCo2O5+δ cathode
    Zhao, Ling
    He, Beibei
    Lin, Bin
    Ding, Hanping
    Wang, Songlin
    Ling, Yihan
    Peng, Ranran
    Meng, Guangyao
    Liu, Xingqin
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 835 - 837
  • [23] Impressive performance of proton-conducting solid oxide fuel cells using a first-generation cathode with tailored cations
    Xu, Xi
    Wang, Huiqiang
    Ma, Jinming
    Liu, Wenyun
    Wang, Xianfen
    Fronzi, Marco
    Bi, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (32) : 18792 - 18798
  • [24] A mixed proton, oxygen ion, and electron conducting cathode for SOFCs based on oxide proton conductors
    Yang, Lei
    Liu, Ze
    Wang, Shizhong
    Choi, YongMan
    Zuo, Chendong
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2010, 195 (02) : 471 - 474
  • [25] High-entropy design in sintering aids for proton-conducting electrolytes of solid oxide fuel cells
    Wang, Meng
    Hua, Yilong
    Gu, Yueyuan
    Yin, Yanru
    Bi, Lei
    CERAMICS INTERNATIONAL, 2024, 50 (02) : 4204 - 4212
  • [26] Proton-conducting solid oxide fuel cells prepared by a single step co-firing process
    Bi, Lei
    Tao, Zetian
    Sun, Wenping
    Zhang, Shangquan
    Peng, Ranran
    Liu, Wei
    JOURNAL OF POWER SOURCES, 2009, 191 (02) : 428 - 432
  • [27] Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides
    Bi, Lei
    Boulfrad, Samir
    Traversa, Enrico
    SOLID STATE IONICS, 2015, 275 : 101 - 105
  • [28] A real proton-conductive, robust, and cobalt-free cathode for proton-conducting solid oxide fuel cells with exceptional performance
    Yin, Yanru
    Xiao, Dongdong
    Wu, Shuai
    Da'as, Eman Husni
    Gu, Yueyuan
    Bi, Lei
    SUSMAT, 2023, 3 (05): : 697 - 708
  • [29] PrBa0.5Sr0.5Cu2O6-δ as Composite Cathode for Proton-conducting Solid Oxide Fuel Cells
    Chen L.
    Su J.
    He H.
    Zhang Z.
    Cai B.
    Cailiao Daobao/Materials Reports, 2019, 33 (05): : 1615 - 1618
  • [30] Tailoring a micro-nanostructured electrolyte-oxygen electrode interface for proton-conducting reversible solid oxide cells
    Sun, Ce
    Yang, Shaojing
    Lu, Yang
    Wen, Jianjun
    Ye, Xiaofeng
    Wen, Zhaoyin
    JOURNAL OF POWER SOURCES, 2020, 449