A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine

被引:0
|
作者
Dev S. [1 ]
Guo H. [1 ]
Liko B. [1 ]
机构
[1] Energy, Mining and Environment Research Center, National Research Council Canada, Ottawa, ON
关键词
compression ignition; dual-fuel; greenhouse gas reduction; high load; natural gas;
D O I
10.3389/FMECH.2020.545416
中图分类号
学科分类号
摘要
Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions. © 2020 Dev, Guo and Liko.
引用
收藏
相关论文
共 50 条
  • [41] A phenomenological combustion analysis of a dual-fuel natural-gas diesel engine
    Xu, Shuonan
    Anderson, David
    Hoffman, Mark
    Prucka, Robert
    Filipi, Zoran
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2017, 231 (01) : 66 - 83
  • [42] Effect of gas composition on the performance and emissions of a dual-fuel diesel-natural gas engine at low load conditions
    Ulishney, Christopher J.
    Dumitrescu, Cosmin E.
    FUEL, 2022, 324
  • [43] On the Variation of the Effect of Natural Gas Fraction on Dual-Fuel Combustion of Diesel Engine Under Low-to-High Load Conditions
    Yousefi, Amin
    Birouk, Madjid
    Guo, Hongsheng
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2020, 6
  • [44] On the Variation of the Effect of Natural Gas Fraction on Dual-Fuel Combustion of Diesel Engine Under Low-to-High Load Conditions
    Yousefi A.
    Birouk M.
    Guo H.
    Yousefi, Amin (Amin.yousefi@umanitoba.ca), 1600, Frontiers Media S.A. (06):
  • [45] Micro-GA optimization analysis of the effect of diesel injection strategy on natural gas-diesel dual-fuel combustion
    Wu, Zhenkuo
    Han, Zhiyu
    FUEL, 2020, 259 (259)
  • [46] Injection Strategy in Natural Gas-Diesel Dual-Fuel Premixed Charge Compression Ignition Combustion under Low Load Conditions
    Park, Hyunwook
    Shim, Euijoon
    Bae, Choongsik
    ENGINEERING, 2019, 5 (03) : 548 - 557
  • [47] Experimental Optimization of a Small Bore Natural Gas-Diesel Dual Fuel Engine with Direct Fuel Injection
    Fasching, Paul
    Sprenger, Florian
    Eichlseder, Helmut
    SAE INTERNATIONAL JOURNAL OF ENGINES, 2016, 9 (02) : 1072 - 1086
  • [48] An optical investigation of substitution rates on natural gas/diesel dual-fuel combustion in a diesel engine
    Lee, Chia-fon
    Pang, Yuxin
    Wu, Han
    Nithyanandan, Karthik
    Liu, Fushui
    APPLIED ENERGY, 2020, 261
  • [49] Effects of hydrogen mixing ratio on combustion and emissions of natural gas-diesel dual fuel engine with high natural gas substitution rate
    Guo, Baoxing
    Xia, Qi
    Xu, Yuanli
    Xu, Xiaofan
    Zhang, Mengyuan
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2023, 42 (04)
  • [50] INVESTIGATION OF THE MILLER CYCLE ON THE PERFORMANCE AND EMISSION IN A NATURAL GAS-DIESEL DUAL-FUEL MARINE ENGINE BY USING TWO ZONE COMBUSTION MODEL
    Gan, Huibing
    Wang, Huaiyu
    Tang, YuanYuan
    Wang, GuanJie
    THERMAL SCIENCE, 2020, 24 (01): : 259 - 270