A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine

被引:0
|
作者
Dev S. [1 ]
Guo H. [1 ]
Liko B. [1 ]
机构
[1] Energy, Mining and Environment Research Center, National Research Council Canada, Ottawa, ON
关键词
compression ignition; dual-fuel; greenhouse gas reduction; high load; natural gas;
D O I
10.3389/FMECH.2020.545416
中图分类号
学科分类号
摘要
Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions. © 2020 Dev, Guo and Liko.
引用
收藏
相关论文
共 50 条
  • [41] Chemical kinetic analysis on the auto-ignition characteristics of natural gas-diesel dual-fuel combustion under engine-relevant conditions
    Liu, Guanlin
    Wang, Xun
    Xie, Mingke
    Gong, Yanli
    Fu, Jianqin
    Liu, Jingping
    INTERNATIONAL JOURNAL OF CHEMICAL KINETICS, 2023, 55 (11) : 707 - 730
  • [42] Diesel-Minimal Combustion Control of a Natural Gas-Diesel Engine
    Zurbriggen, Florian
    Hutter, Richard
    Onder, Christopher
    ENERGIES, 2016, 9 (01)
  • [43] Large-squish piston geometry and early pilot injection for high efficiency and low methane emission in natural gas-diesel dual fuel engine at high-load operations
    Park, Hyunwook
    Shim, Euijoon
    Lee, Junsun
    Oh, Seungmook
    Kim, Changup
    Lee, Yonggyu
    Kang, Kernyong
    FUEL, 2022, 308
  • [44] Improvements in thermal efficiency and exhaust emissions with ozone addition in a natural gas-diesel dual fuel engine
    Kobashi, Yoshimitsu
    Inagaki, Ryuya
    Shibata, Gen
    Ogawa, Hideyuki
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2023, 24 (08) : 3544 - 3555
  • [45] Novel approach for efficient operation and reduced harmful emissions on a dual-fuel research engine propelled with hydrogen-enriched natural gas and diesel
    Loyte, Akshay
    Suryawanshi, Jiwak
    Bhiogade, Girish
    Devarajan, Yuvarajan
    Raja, T.
    Gavaskar, G.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2023, 45 (03) : 8218 - 8238
  • [46] Optimizing combustion and emissions in natural gas/diesel dual-fuel engine with pilot injection strategy
    Liu, Junheng
    Zhao, Wenyao
    Zhang, Xuchao
    Ji, Qian
    Ma, Hongjie
    Sun, Ping
    Wang, Pan
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2024, 48
  • [47] Real cycle of a compression ignition engine running in dual-fuel regime: Diesel and natural gas
    Ciclo real de um motor de ignição por compressão que trabalha em regime bicombustível: Diesel e gás natural
    2013, University Federal de Uberlandia (22): : 87 - 95
  • [48] Effects of pilot injection timing on the combustion noise and particle emissions of a diesel/natural gas dual-fuel engine at low load
    Yang, Bo
    Wang, Long
    Ning, Le
    Zeng, Ke
    APPLIED THERMAL ENGINEERING, 2016, 102 : 822 - 828
  • [49] Effect of equivalence ratio on combustion and emissions of a dual-fuel natural gas engine ignited with diesel
    Zheng, Jinbao
    Wang, Jinhua
    Zhao, Zhibo
    Wang, Duidui
    Huang, Zuohua
    APPLIED THERMAL ENGINEERING, 2019, 146 : 738 - 751
  • [50] Investigation of natural gas enrichment with high hydrogen participation in dual fuel diesel engine
    Benbellil, Messaoud Abdelalli
    Lounici, Mohand Said
    Loubar, Khaled
    Tazerout, Mohand
    ENERGY, 2022, 243