A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine

被引:0
|
作者
Dev S. [1 ]
Guo H. [1 ]
Liko B. [1 ]
机构
[1] Energy, Mining and Environment Research Center, National Research Council Canada, Ottawa, ON
关键词
compression ignition; dual-fuel; greenhouse gas reduction; high load; natural gas;
D O I
10.3389/FMECH.2020.545416
中图分类号
学科分类号
摘要
Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions. © 2020 Dev, Guo and Liko.
引用
收藏
相关论文
共 50 条
  • [31] Expansion of low-load operating range by mixture stratification in a natural gas-diesel dual-fuel premixed charge compression ignition engine
    Park, Hyunwook
    Shim, Euijoon
    Bae, Choongsik
    ENERGY CONVERSION AND MANAGEMENT, 2019, 194 : 186 - 198
  • [32] A study on an electronically controlled liquefied petroleum gas-diesel dual-fuel automobile
    Zhang, CH
    Bian, YZ
    Si, LZ
    Liao, JZ
    Odbileg, N
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2005, 219 (D2) : 207 - 213
  • [33] Combustion Performance and Unburned Hydrocarbon Emissions of a Natural Gas-Diesel Dual Fuel Engine at a Low Load Condition
    Guo, Hongsheng
    Liko, Brian
    Luque, Luis
    Littlejohns, Jennifer
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (11):
  • [34] Comparative evaluation of conventional dual fuel, early pilot, and reactivity-controlled compression ignition modes in a natural gas-diesel dual-fuel engine
    Park, Hyunwook
    Shim, Euijoon
    Lee, Junsun
    Oh, Seungmook
    Kim, Changup
    Lee, Yonggyu
    Kang, Kernyong
    ENERGY, 2023, 268
  • [35] Numerical study on the effects of intake valve timing on performance of a natural gas-diesel dual-fuel engine and multi-objective Pareto optimization
    Jung, Jaehwan
    Song, Soonho
    Hur, Kwang Beom
    APPLIED THERMAL ENGINEERING, 2017, 121 : 604 - 616
  • [36] A NUMERICAL INVESTIGATION ON NO2 FORMATION IN A NATURAL GAS-DIESEL DUAL FUEL ENGINE
    Li, Yu
    Li, Hailin
    Li, Yongzhi
    Yao, Mingfa
    Guo, Hongsheng
    PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE FALL TECHNICAL CONFERENCE, 2017, VOL 2, 2017,
  • [37] A Numerical Investigation on NO2 Formation in a Natural Gas-Diesel Dual Fuel Engine
    Li, Yu
    Li, Hailin
    Guo, Hongsheng
    Li, Yongzhi
    Yao, Mingfa
    JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2018, 140 (09):
  • [38] Effect of post-injection strategy on greenhouse gas emissions of natural gas/diesel dual-fuel engine at high load conditions
    Yousefi, Amin
    Guo, Hongsheng
    Birouk, Madjid
    Liko, Brian
    Lafrance, Simon
    FUEL, 2021, 290
  • [39] Numerical investigation of dual-fuel injection timing on air-fuel mixing and combustion process in a novel natural gas-diesel rotary engine
    Chen, Wei
    Pan, Jianfeng
    Fan, Baowei
    Otchere, Peter
    Miao, Nannan
    Lu, Yao
    ENERGY CONVERSION AND MANAGEMENT, 2018, 176 : 334 - 348
  • [40] Combustion performance and stability of a dual-fuel diesel-natural-gas engine
    Sun, Lu
    Liu, Yifu
    Zeng, Ke
    Yang, Rui
    Hang, Zuohua
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2015, 229 (02) : 235 - 246