A Study on the High Load Operation of a Natural Gas-Diesel Dual-Fuel Engine

被引:0
|
作者
Dev S. [1 ]
Guo H. [1 ]
Liko B. [1 ]
机构
[1] Energy, Mining and Environment Research Center, National Research Council Canada, Ottawa, ON
关键词
compression ignition; dual-fuel; greenhouse gas reduction; high load; natural gas;
D O I
10.3389/FMECH.2020.545416
中图分类号
学科分类号
摘要
Diesel fueled compression ignition engines are widely used in power generation and freight transport owing to their high fuel conversion efficiency and ability to operate reliably for long periods of time at high loads. However, such engines generate significant amounts of carbon dioxide (CO2), nitrogen oxides (NOx), and particulate matter (PM) emissions. One solution to reduce the CO2 and particulate matter emissions of diesel engines while maintaining their efficiency and reliability is natural gas (NG)-diesel dual-fuel combustion. In addition to methane emissions, the temperatures of the diesel injector tip and exhaust gas can also be concerns for dual-fuel engines at medium and high load operating conditions. In this study, a single cylinder NG-diesel dual-fuel research engine is operated at two high load conditions (75% and 100% load). NG fraction and diesel direct injection (DI) timing are two of the simplest control parameters for optimization of diesel engines converted to dual-fuel engines. In addition to studying the combined impact of these parameters on combustion and emissions performance, another unique aspect of this research is the measurement of the diesel injector tip temperature which can predict potential coking issues in dual-fuel engines. Results show that increasing NG fraction and advancing diesel direct injection timing can increase the injector tip temperature. With increasing NG fraction, while the methane emissions increase, the equivalent CO2 emissions (cumulative greenhouse gas effect of CO2 and CH4) of the engine decrease. Increasing NG fraction also improves the brake thermal efficiency of the engine though NOx emissions increase. By optimizing the combustion phasing through control of the DI timing, brake thermal efficiencies of the order of ∼42% can be achieved. At high loads, advanced diesel DI timings typically correspond to the higher maximum cylinder pressure, maximum pressure rise rate, brake thermal efficiency and NOx emissions, and lower soot, CO, and CO2-equivalent emissions. © 2020 Dev, Guo and Liko.
引用
收藏
相关论文
共 50 条
  • [21] Experimental and Simulation Analysis of Natural Gas-Diesel Combustion in Dual-Fuel Engines
    Dimitriou P.
    Tsujimura T.
    Kojima H.
    Aoyagi K.
    Kurimoto N.
    Nishijima Y.
    Frontiers in Mechanical Engineering, 2020, 6
  • [22] Diesel and natural gas dual-fuel RCCI engine performance at high altitude
    Liu, Shaohua
    Zhao, Weiyi
    Chai, Litian
    Shen, Lizhong
    Xin, Qianfan
    Jin, Jiachen
    Bi, Yuhua
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2024, 49 (01):
  • [23] Diesel and natural gas dual-fuel RCCI engine performance at high altitude
    Shaohua Liu
    Weiyi Zhao
    Litian Chai
    Lizhong Shen
    Qianfan Xin
    Jiachen Jin
    Yuhua Bi
    Sādhanā, 49
  • [24] Editorial: Advances in Compression Ignition Natural Gas-Diesel Dual-Fuel Engines
    Guo, Hongsheng
    Li, Hailin
    Guzzella, Lino
    Shioji, Masahiro
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2021, 7
  • [25] Numerical investigation on the combustion and emission characteristics of a heavy-duty natural gas-diesel dual-fuel engine
    Liu, Xinlei
    Wang, Hu
    Zheng, Zunqing
    Yao, Mingfa
    FUEL, 2021, 300
  • [26] Synergistic effect of swirl flow and prechamber jet on the combustion of a natural gas-diesel dual-fuel marine engine
    Wang, Huaiyin
    Wang, Tianyou
    Feng, Yizhuo
    Lu, Zhen
    Sun, Kai
    FUEL, 2022, 325
  • [27] Improvement of combustion and emissions with exhaust gas recirculation in a natural gas-diesel dual-fuel premixed charge compression ignition engine at low load operations
    Park, Hyunwook
    Shim, Euijoon
    Bae, Choongsik
    FUEL, 2019, 235 : 763 - 774
  • [28] OPTIMIZATION OF THE COMBUSTION CHAMBER DESIGN OF A NATURAL GAS-DIESEL DUAL FUEL ENGINE RUNNING AT LOW LOAD
    Scrignoli, Francesco
    Savioli, Tommaso
    Rinaldini, Carlo Alberto
    PROCEEDINGS OF ASME 2023 ICE FORWARD CONFERENCE, ICEF2023, 2023,
  • [29] Numerical Evaluation of the Effects of Compression Ratio and Diesel Fuel Injection Timing on the Performance and Emissions of a Fumigated Natural Gas-Diesel Dual-Fuel Engine
    Papagiannakis, Roussos G.
    Hountalas, Dimitrios T.
    Krishnan, Sundar Rajan
    Srinivasan, Kalyan Kumar
    Rakopoulos, Dimitrios C.
    Rakopoulos, Constantine D.
    JOURNAL OF ENERGY ENGINEERING, 2016, 142 (02)
  • [30] Dual-fuel operation of gasoline and natural gas in a turbocharged engine
    Singh, Eshan
    Morganti, Kai
    Dibble, Robert
    FUEL, 2019, 237 : 694 - 706