Heterogeneous graph convolutional network for multi-view semi-supervised classification

被引:7
|
作者
Wang, Shiping [1 ]
Huang, Sujia [1 ]
Wu, Zhihao [1 ]
Liu, Rui [2 ]
Chen, Yong [3 ]
Zhang, Dell [4 ]
机构
[1] Fuzhou Univ, Coll Comp & Data Sci, Fuzhou 350108, Peoples R China
[2] Beihang Univ, Sch Comp Sci, Beijing 100191, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Comp Sci, Beijing 100871, Peoples R China
[4] Thomson Reuters Labs, London E14 5EP, England
基金
中国国家自然科学基金;
关键词
Graph convolutional network; Heterogeneous graph; Multi-view learning; Semi-supervised classification; Learnable graph structure; FEATURE FUSION; REGRESSION;
D O I
10.1016/j.neunet.2024.106438
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a novel approach to semantic representation learning from multi-view datasets, distinct from most existing methodologies which typically handle single-view data individually, maintaining a shared semantic link across the multi-view data via a unified optimization process. Notably, even recent advancements, such as Co-GCN, continue to treat each view as an independent graph, subsequently aggregating the respective GCN representations to form output representations, which ignores the complex semantic interactions among heterogeneous data. To address the issue, we design a unified framework to connect multi-view data with heterogeneous graphs. Specifically, our study envisions multi-view data as a heterogeneous graph composed of shared isomorphic nodes and multi-type edges, wherein the same nodes are shared across different views, but each specific view possesses its own unique edge type. This perspective motivates us to utilize the heterogeneous graph convolutional network (HGCN) to extract semantic representations from multi-view data for semi-supervised classification tasks. To the best of our knowledge, this is an early attempt to transfigure multi-view data into a heterogeneous graph within the realm of multi-view semi-supervised learning. In our approach, the original input of the HGCN is composed of concatenated multi-view matrices, and its convolutional operator (the graph Laplacian matrix) is adaptively learned from multi-type edges in a data- driven fashion. After rigorous experimentation on eight public datasets, our proposed method, hereafter referred to as HGCN-MVSC, demonstrated encouraging superiority over several state-of-the-art competitors for semi-supervised classification tasks.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Joint consensus and diversity for multi-view semi-supervised classification
    Wenzhang Zhuge
    Chenping Hou
    Shaoliang Peng
    Dongyun Yi
    Machine Learning, 2020, 109 : 445 - 465
  • [22] Multi-view semi-supervised learning for classification on dynamic networks
    Chen, Chuan
    Li, Yuzheng
    Qian, Hui
    Zheng, Zibin
    Hu, Yanqing
    KNOWLEDGE-BASED SYSTEMS, 2020, 195
  • [23] Accelerated manifold embedding for multi-view semi-supervised classification
    Wang, Shiping
    Wang, Zhewen
    Guo, Wenzhong
    INFORMATION SCIENCES, 2021, 562 (562) : 438 - 451
  • [24] Seeded random walk for multi-view semi-supervised classification
    Wang, Shiping
    Wang, Zhewen
    Lim, Kart-Leong
    Xiao, Guobao
    Guo, Wenzhong
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [25] Joint consensus and diversity for multi-view semi-supervised classification
    Zhuge, Wenzhang
    Hou, Chenping
    Peng, Shaoliang
    Yi, Dongyun
    MACHINE LEARNING, 2020, 109 (03) : 445 - 465
  • [26] SEMI-SUPERVISED CERVICAL DYSPLASIA CLASSIFICATION WITH LEARNABLE GRAPH CONVOLUTIONAL NETWORK
    Ou, Yanglan
    Xue, Yuan
    Yuan, Ye
    Xu, Tao
    Pisztora, Vincent
    Li, Jia
    Huang, Xiaolei
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1720 - 1724
  • [27] Hybrid Graph Convolutional Network for Semi-Supervised Retinal Image Classification
    Zhang, Guanghua
    Pan, Jing
    Zhang, Zhaoxia
    Zhang, Heng
    Xing, Changyuan
    Sun, Bin
    Li, Ming
    IEEE ACCESS, 2021, 9 : 35778 - 35789
  • [28] Exploring unified cross-view hypergraph generation for multi-view semi-supervised classification
    Shi, Zhibin
    Lin, Zhenghong
    Lin, Weihong
    Wang, Shiping
    NEURAL NETWORKS, 2025, 188
  • [29] Self-Supervised Graph Convolutional Network for Multi-View Clustering
    Xia, Wei
    Wang, Qianqian
    Gao, Quanxue
    Zhang, Xiangdong
    Gao, Xinbo
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 24 : 3182 - 3192
  • [30] A Semi-Supervised Multi-View Genetic Algorithm
    Lazarova, Gergana
    Koychev, Ivan
    2014 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, MODELLING AND SIMULATION, 2014, : 87 - 91