Soil carbon content prediction using multi-source data feature fusion of deep learning based on spectral and hyperspectral images

被引:17
作者
Li X. [1 ,2 ]
Li Z. [2 ]
Qiu H. [1 ]
Chen G. [3 ]
Fan P. [1 ]
机构
[1] Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao
[2] College of Computer Science and Technology, China University of Petroleum (East China), Qingdao
[3] College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao
基金
中国国家自然科学基金;
关键词
Deep learning; Feature extraction; Hyperspectral image; Soil carbon; Visible near-infrared reflectance spectroscopy;
D O I
10.1016/j.chemosphere.2023.139161
中图分类号
学科分类号
摘要
Visible near-infrared reflectance spectroscopy (VNIR) and hyperspectral images (HSI) have their respective advantages in soil carbon content prediction, and the effective fusion of VNIR and HSI is of great significance for improving the prediction accuracy. But the contribution difference analysis of multiple features in the multi-source data is inadequate, and there is a lack of in-depth research on the contribution difference analysis of artificial feature and deep learning feature. In order to solve the problem, soil carbon content prediction methods based on VNIR and HSI multi-source data feature fusion are proposed. The multi-source data fusion network under the attention mechanism and the multi-source data fusion network with artificial feature are designed. For the multi-source data fusion network based on the attention mechanism, the information are fused through the attention mechanism according to the contribution difference of each feature. For the other network, artificial feature are introduced to fuse multi-source data. The results show that multi-source data fusion network based on the attention mechanism can improve the prediction accuracy of soil carbon content, and multi-source data fusion network combined with artificial feature has better prediction effect. Compared with two single-source data from the VNIR and HSI, the relative percent deviation of Neilu, Aoshan Bay and Jiaozhou Bay based on multi-source data fusion network combined with artificial feature are increased by 56.81% and 149.18%, 24.28% and 43.96%, 31.16% and 28.73% respectively. This study can effectively solve the problem of the deep fusion of multiple features in the soil carbon content prediction by VNIR and HSI, so as to improve the accuracy and stability of soil carbon content prediction, promote the application and development of soil carbon content prediction in spectral and hyperspectral image, and provide technical support for the study of carbon cycle and the carbon sink. © 2023 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [31] Oil palm yield prediction across blocks from multi-source data using machine learning and deep learning
    Ang, Yuhao
    Shafri, Helmi Zulhaidi Mohd
    Lee, Yang Ping
    Bakar, Shahrul Azman
    Abidin, Haryati
    Junaidi, Mohd Umar Ubaydah Mohd
    Hashim, Shaiful Jahari
    Che'Ya, Nik Norasma
    Hassan, Mohd Roshdi
    San Lim, Hwee
    Abdullah, Rosni
    Yusup, Yusri
    Muhammad, Syahidah Akmal
    Teh, Sin Yin
    Samad, Mohd Na'aim
    EARTH SCIENCE INFORMATICS, 2022, 15 (04) : 2349 - 2367
  • [32] Oil palm yield prediction across blocks from multi-source data using machine learning and deep learning
    Yuhao Ang
    Helmi Zulhaidi Mohd Shafri
    Yang Ping Lee
    Shahrul Azman Bakar
    Haryati Abidin
    Mohd Umar Ubaydah Mohd Junaidi
    Shaiful Jahari Hashim
    Nik Norasma Che’Ya
    Mohd Roshdi Hassan
    Hwee San Lim
    Rosni Abdullah
    Yusri Yusup
    Syahidah Akmal Muhammad
    Sin Yin Teh
    Mohd Na’aim Samad
    Earth Science Informatics, 2022, 15 : 2349 - 2367
  • [33] An approach for accurate identification and monitoring of species in mangrove forests based on multi-source spectral data and deep learning
    Erandi, Monterrubio-Martinez
    Rubicel, Trujillo-Acatitla
    Jose, Tuxpan-Vargas
    Patricia, Moreno-Casasola
    ECOLOGICAL INFORMATICS, 2025, 85
  • [34] Meta-MSNet: Meta-Learning Based Multi-Source Data Fusion for Traffic Flow Prediction
    Fang, Shen
    Pan, Xianbing
    Xiang, Shiming
    Pan, Chunhong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 6 - 10
  • [35] The intelligent fault identification method based on multi-source information fusion and deep learning
    Guo, Dashu
    Yang, Xiaoshuang
    Peng, Peng
    Zhu, Lei
    He, Handong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [36] Spectral unmixing based fusion algorithm for hyperspectral and multi-spectral images
    Zhao, Chunhui
    Zhang, Hongyu
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 772 - 776
  • [37] Prediction of Soil Carbon and Nitrogen Content Using Hyperspectral Image with A New Feature Selection Algorithm
    Li, Xueying
    Li, Zongmin
    Fan, Pingping
    Qiu, Huimin
    Hou, Guangli
    2021 11TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2021,
  • [38] Predicting Wildfires in the Caribbean Using Multi-source Satellite Data and Deep Learning
    Torres, J. F.
    Valencia, S.
    Martinez-Alvarez, F.
    Hoyos, N.
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT II, 2023, 14135 : 3 - 14
  • [39] Monitoring tropical cyclone using multi-source data and deep learning: a review
    Fan, Zhiqiang
    Jin, Yongjun
    Yue, Yinlei
    Fang, Shiheng
    Liu, Jia
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2024,
  • [40] Hyperspectral Data Feature Extraction Using Deep Learning Hybrid Model
    Xinhua Jiang
    Heru Xue
    Lina Zhang
    Xiaojing Gao
    Yanqing Zhou
    Jie Bai
    Wireless Personal Communications, 2018, 102 : 3529 - 3543