Double patch antenna array for communication and out-of-band rf energy harvesting

被引:4
作者
Silva V.S. [1 ]
Paz H.P. [1 ]
Cambero E.V.V. [1 ]
Pereira E.T. [1 ]
Casella I.R.S. [1 ]
Capovilla C.E. [1 ]
机构
[1] Universidade Federal do ABC (UFABC), Av. dos Estados 5001, Santo André, SP
基金
巴西圣保罗研究基金会;
关键词
Patch antenna array; Rectenna; RF energy harvesting; SWIPT; Wireless communication;
D O I
10.1590/2179-10742020v19i3788
中图分类号
学科分类号
摘要
This paper presents a patch antenna array topology for Simultaneous Wireless Information and Power Transfer (SWIPT) applications. The resulting Double Patch Antenna Array (DPA) is composed of two patch antennas operating at different frequencies and fabricated on a unique substrate. One of the patches operates at the 1.8 GHz mobile communication band and is used for wireless communication, while the other one operates at the 2.4 GHz Industrial, Scientific, and Medical (ISM) band, and is used for Radio Frequency Energy Harvesting (RFEH). The analyzes and measurements carried out have shown that the adopted topology has satisfactory performance for communication, with a gain of 1.5 dBi, and for out-of-band energy harvesting, with a Vout of 160 mV at 2.45 GHz. These results indicate this approach as a promising strategy for low-power wireless applications. © 2020 SBMO/SBMag.
引用
收藏
页码:356 / 365
页数:9
相关论文
共 26 条
[1]  
Andrews J. G., Buzzi S., Choi W., Hanly S. V., Lozano A., Soong A. C. K., Zhang J. C., What Will 5G Be?, IEEE Journal on Selected Areas in Communications, 32, pp. 1065-1082, (2014)
[2]  
Osseiran A., Boccardi F., Braun V., Kusume K., Marsch P., Maternia M., Queseth O., Schellmann M., Schotten H., Taoka H., Tullberg H., Uusitalo M. A., Timus B., Fallgren M., Scenarios for 5G mobile and wireless communications: the vision of the METIS project, IEEE Communications Magazine, 52, pp. 26-35, (2014)
[3]  
Bello H., Xiaoping Z., Nordin R., Xin J., Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications, Sensors, 19, (2019)
[4]  
Callaway E. H., Wireless sensor networks, (2004)
[5]  
Lu X., Wang P., Niyato D., Kim D. I., Han Z., Wireless Networks With RF Energy Harvesting: A Contemporary Survey, IEEE Communications Surveys & Tutorials, 17, pp. 757-789, (2015)
[6]  
Goncalves Y. S., Resende U. C., Soares I. V., Electromagnetic Energy Harvesting Using a Glass Window, Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 19, pp. 50-59, (2020)
[7]  
Grover P., Sahai A., Shannon meets Tesla: Wireless information and power transfer, 2010 IEEE International Symposium on Information Theory, (2010)
[8]  
Perera T. D. P., Jayakody D. N. K., Sharma S. K., Chatzinotas S., Li J., Simulataneous Wireless Information and Power Transfer (SWIPT): Recent Advances and Future Challenges, IEEE Communications Surveys & Tutorials, 20, (2018)
[9]  
Jayakody D. N. K., Thompson J., Chatzinotas S., Durrani S., Wireless Information and Power Transfer: A New Paradigm for Green Communications, (2018)
[10]  
Bi S., Zeng Y., Zhang R., Wireless powered communication networks: an overview, IEEE Wireless Communications, 23, pp. 10-18, (2016)