Reducing the Depth of Linear Reversible Quantum Circuits

被引:23
作者
De Brugiere, Timothee Goubault [1 ,3 ]
Baboulin, Marc [1 ]
Valiron, Benoit [2 ]
Martiel, Simon [3 ]
Allouche, Cyril [3 ]
机构
[1] Univ Paris Saclay, Lab Rech Informat, F-91190 Orsay, France
[2] CentraleSupelec, Lab Rech Informat, F-91190 Orsay, France
[3] Atos Quantum Lab, F-78340 Les Clayes Sous Bois, France
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2021年 / 2卷
关键词
Linear reversible circuits; quantum computation; reversible logic; OPTIMIZATION;
D O I
10.1109/TQE.2021.3091648
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In quantum computing the decoherence time of the qubits determines the computation time available, and this time is very limitedwhen using current hardware. In this article, weminimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, "CNOT+T" circuits, etc.). We propose a practical formulation of a divide-and-conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
引用
收藏
页数:22
相关论文
共 50 条
[41]   Equivalence Checking of Reversible Circuits [J].
Wille, Robert ;
Grosse, Daniel ;
Miller, D. Michael ;
Drechsler, Rolf .
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2012, 19 (04) :361-378
[42]   A Meet-in-the-Middle Algorithm for Fast Synthesis of Depth-Optimal Quantum Circuits [J].
Amy, Matthew ;
Maslov, Dmitri ;
Mosca, Michele ;
Roetteler, Martin .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2013, 32 (06) :818-830
[43]   Fault testing for reversible circuits [J].
Patel, KN ;
Hayes, JP ;
Markov, IL .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2004, 23 (08) :1220-1230
[44]   The Algorithm for Reversible Circuits Synthesis [J].
Skorupski, Andrzej ;
Gracki, Krzysztof .
INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2020, 66 (02) :281-286
[45]   Mapping quantum circuits to shallow-depth measurement patterns based on graph states [J].
Kaldenbach, Thierry N. ;
Heller, Matthias .
QUANTUM SCIENCE AND TECHNOLOGY, 2025, 10 (01)
[46]   Reversible Gates and Circuits Descriptions [J].
Gracki, Krzysztof .
PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH ENERGY PHYSICS EXPERIMENTS 2017, 2017, 10445
[47]   Constructing quantum circuits with global gates [J].
van de Wetering, John .
NEW JOURNAL OF PHYSICS, 2021, 23 (04)
[48]   SyReC: A hardware description language for the specification and synthesis of reversible circuits [J].
Wille, Robert ;
Schonborn, Eleonora ;
Soeken, Mathias ;
Drechsler, Rolf .
INTEGRATION-THE VLSI JOURNAL, 2016, 53 :39-53
[49]   Synthesis of reversible logic for nanoelectronic circuits [J].
De Vos, Alexis ;
Van Rentergem, Yvan .
INTERNATIONAL JOURNAL OF CIRCUIT THEORY AND APPLICATIONS, 2007, 35 (03) :325-341
[50]   Efficient designs of reversible sequential circuits [J].
Kheirandish, Davar ;
Haghparast, Majid ;
Reshadi, Midia ;
Hosseinzadeh, Mehdi .
JOURNAL OF SUPERCOMPUTING, 2021, 77 (12) :13828-13862