Reducing the Depth of Linear Reversible Quantum Circuits

被引:23
作者
De Brugiere, Timothee Goubault [1 ,3 ]
Baboulin, Marc [1 ]
Valiron, Benoit [2 ]
Martiel, Simon [3 ]
Allouche, Cyril [3 ]
机构
[1] Univ Paris Saclay, Lab Rech Informat, F-91190 Orsay, France
[2] CentraleSupelec, Lab Rech Informat, F-91190 Orsay, France
[3] Atos Quantum Lab, F-78340 Les Clayes Sous Bois, France
来源
IEEE TRANSACTIONS ON QUANTUM ENGINEERING | 2021年 / 2卷
关键词
Linear reversible circuits; quantum computation; reversible logic; OPTIMIZATION;
D O I
10.1109/TQE.2021.3091648
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In quantum computing the decoherence time of the qubits determines the computation time available, and this time is very limitedwhen using current hardware. In this article, weminimize the execution time (the depth) for a class of circuits referred to as linear reversible circuits, which has many applications in quantum computing (e.g., stabilizer circuits, "CNOT+T" circuits, etc.). We propose a practical formulation of a divide-and-conquer algorithm that produces quantum circuits that are twice as shallow as those produced by existing algorithms. We improve the theoretical upper bound of the depth in the worst case for some range of qubits. We also propose greedy algorithms based on cost minimization to find more optimal circuits for small or simple operators. Overall, we manage to consistently reduce the total depth of a class of reversible functions, with up to 92% savings in an ancilla-free case and up to 99% when ancillary qubits are available.
引用
收藏
页数:22
相关论文
共 50 条
[21]   Heuristic methods to use don't cares in automated design of reversible and quantum logic circuits [J].
Mohammadi, Majid ;
Eshghi, Mohammad .
QUANTUM INFORMATION PROCESSING, 2008, 7 (04) :175-192
[22]   Behavioral Model of V and V+ Gates to Implement the reversible Circuits Using Quantum Gates [J].
Mohammadi, Majid ;
Eshghi, Mohammad ;
Bahrololoom, Abbas .
2008 IEEE REGION 10 CONFERENCE: TENCON 2008, VOLS 1-4, 2008, :865-+
[23]   Reducing the number of non-Clifford gates in quantum circuits [J].
Kissinger, Aleks ;
van de Wetering, John .
PHYSICAL REVIEW A, 2020, 102 (02)
[24]   Gaussian Elimination versus Greedy Methods for the Synthesis of Linear Reversible Circuits [J].
De Brugiere, Timothee Goubault ;
Baboulin, Marc ;
Valiron, Benoit ;
Martiel, Simon ;
Allouche, Cyril .
ACM TRANSACTIONS ON QUANTUM COMPUTING, 2021, 2 (03)
[25]   Synthesis of quantum circuits for linear nearest neighbor architectures [J].
Saeedi, Mehdi ;
Wille, Robert ;
Drechsler, Rolf .
QUANTUM INFORMATION PROCESSING, 2011, 10 (03) :355-377
[26]   GF(4) based synthesis of quaternary Reversible/Quantum logic circuits [J].
Khan, Mozammel H. A. ;
Perkowski, Marek A. .
JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2007, 13 (4-6) :583-603
[27]   Template-based mapping of reversible circuits to IBM quantum computers [J].
Niemann, Philipp ;
de Almeida, Alexandre A. A. ;
Dueck, Gerhard ;
Drechsler, Rolf .
MICROPROCESSORS AND MICROSYSTEMS, 2022, 90
[28]   Efficient Designs of Reversible Shift Register Circuits with Low Quantum Cost [J].
Noorallahzadeh, Mojtaba ;
Mosleh, Mohammad .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2021, 30 (12)
[29]   Novel Quaternary Quantum Reversible Half Adder and Full Adder Circuits [J].
Doshanlou, Abdollah Norouzi ;
Haghparast, Majid ;
Hosseinzadeh, Mehdi .
IETE JOURNAL OF RESEARCH, 2022, 68 (02) :1525-1531
[30]   Constant-depth circuits for dynamic simulations of materials on quantum computers [J].
Lindsay Bassman Oftelie ;
Roel Van Beeumen ;
Ed Younis ;
Ethan Smith ;
Costin Iancu ;
Wibe A. de Jong .
Materials Theory, 6 (1)