Cellulose Nanocrystals (CNCs) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films

被引:21
作者
Ben Shalom T. [1 ]
Nevo Y. [2 ]
Leibler D. [2 ]
Shtein Z. [1 ]
Azerraf C. [2 ]
Lapidot S. [2 ]
Shoseyov O. [1 ]
机构
[1] Robert H. Smith Faculty of Agriculture, Food and Environment, The Center for Nano Science and Nano Technology, The Hebrew University of Jerusalem, Rehovot
[2] Melodea Ltd., Rehovot
关键词
biodegradable films; bionanocomposite; nanocellulose; polyvinyl alcohol;
D O I
10.1002/mabi.201800347
中图分类号
学科分类号
摘要
This study is aimed to explore the properties of cellulose nanocrystals (CNC)/polyvinyl alcohol (PVA) composite films with and without 1,2,3,4-butane tetracarboxylic acid (BTCA), a nontoxic crosslinker. CNC and CNC-PVA nanocomposite films are prepared using solution-casting technique. Differential scanning calorimetry (DSC) analyses show that crosslinking increased the glass transition temperature but reduced the melting temperature and crystallinity. Furthermore, high CNC concentrations in the PVA matrix interfere with PVA crystallinity, whereas in specific ratio between CNC and PVA, two different crystalline structures are observed within the PVA matrix. Film surfaces and fracture topographies characterized using scanning electron microscope indicate that at certain CNC-PVA ratios, micron-sized needle-like crystals have formed. These crystalline structures correlate with the remarkable improvement in mechanical properties of the CNC-PVA nanocomposite films, that is, enhanced tensile strain and toughness to 570% and 202 MJ m−3, respectively, as compared to pristine PVA. BTCA enhances the tensile strain, ultimate tensile stress, toughness, and modulus of CNC films compared to pristine CNC films. Water absorption of crosslinked CNC and CNC-PVA nanocomposite films is significantly reduced, while film transparency is significantly improved as a function of PVA and crosslinker content. The presented results indicate that CNC-PVA nanocomposite films may find applications in packaging, and though materials applications. © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
相关论文
共 33 条
[1]  
Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T., Lapidot S., Shoseyov O., Curr. Opin. Biotechnol., 39, (2016)
[2]  
Khan A., Huq T., Khan R.A., Riedl B., Lacroix M., Crit. Rev. Food Sci. Nutr., 54, (2014)
[3]  
Vilarinho F., Silva A.S., Vaz M.F., Farinha J.P., Crit. Rev. Food Sci. Nutr., 58, (2018)
[4]  
Chiellini E., Corti A., D'Antone S., Solaro R., Prog. Polym. Sci., 28, (2003)
[5]  
Soriano M.L., Ruiz-Palomera C., Nanotechnology in Environmental Science, (2018)
[6]  
Sturcova A., Davies G.R., Eichhorn S.J., Biomacromolecules, 6, (2005)
[7]  
Nickerson R.F., Habrle J.A., Ind. Eng. Chem., 39, (1947)
[8]  
Ranby B.G., Acta Chem. Scand., 3, (1949)
[9]  
Ranby B.G., Discuss. Faraday Soc., 11, (1951)
[10]  
Belbekhouche S., Bras J., Siqueira G., Chappey C., Lebrun L., Khelifi B., Marais S., Dufresne A., Carbohydr. Polym., 83, (2011)