Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques

被引:0
作者
Arceo-Vilas A. [1 ]
Fernandez-Lozano C. [2 ,3 ]
Pita S. [1 ]
Pértega-Díaz S. [1 ]
Pazos A. [2 ,3 ]
机构
[1] Clinical Epidemiology and Biostat. Res. Group, Inst. de Investigacion Biomedica de A Coruna (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña, A Coruña
[2] Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña
[3] Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Medica y Diagnostico Radiologico, Inst. de Investigacion Biomedica de A Coruna(INIBIC),Complexo Hospitalario Univ. de A Coruna (CHUAC), SERGAS, Universidade da Coruña, A Coruña
来源
Fernandez-Lozano, Carlos (carlos.fernandez@udc.es) | 1600年 / PeerJ Inc.卷 / 06期
关键词
Feature selection; Machine learning; Mediterranean diet; Nutrition disorders; Nutritional status; Support vector machines;
D O I
10.7717/PEERJ-CS.287
中图分类号
学科分类号
摘要
Food consumption patterns have undergone changes that in recent years have resulted in serious health problems. Studies based on the evaluation of the nutritional status have determined that the adoption of a food pattern-based primarily on a Mediterranean diet (MD) has a preventive role, as well as the ability to mitigate the negative effects of certain pathologies. A group of more than 500 adults aged over 40 years from our cohort in Northwestern Spain was surveyed. Under our experimental design, 10 experiments were run with four different machine-learning algorithms and the predictive factors most relevant to the adherence of a MD were identified. A feature selection approach was explored and under a null hypothesis test, it was concluded that only 16 measures were of relevance, suggesting the strength of this observational study. Our findings indicate that the following factors have the highest predictive value in terms of the degree of adherence to the MD: basal metabolic rate, mini nutritional assessment questionnaire total score, weight, height, bone density, waist-hip ratio, smoking habits, age, EDI-OD, circumference of the arm, activity metabolism, subscapular skinfold, subscapular circumference in cm, circumference of the waist, circumference of the calf and brachial area. © 2020 Arceo-Vilas et al.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 87 条
[61]  
R: A language and environment for statistical computing, (2016)
[62]  
Ravasco P., Anderson H., Mardones F., Métodos de valoración del estado nutricional, Nutricion Hospitalaria, 25, pp. 57-66, (2010)
[63]  
Rodriguez A., Fernandez-Lozano C., Dorado J., Rabunal J.R., Two-dimensional gel electrophoresis image registration using block-matching techniques and deformation models, Analytical Biochemistry, 454, pp. 53-59, (2014)
[64]  
Rodriguez Rodriguez E., Lopez Plaza B., Lopez Sobaler M., Ortega R., Prevalencia de sobrepeso y obesidad en adultos espanoles, Nutricion Hospitalaria, 26, 2, pp. 355-363, (2011)
[65]  
Rolland Y., Lauwers-Cances V., Cournot M., Nourhashemi F., Reynish W., Riviere D., Vellas B., Grandjean H., Sarcopenia, calf circumference, and physical function of elderly women: A cross-sectional study, Journal of the American Geriatrics Society, 51, 8, pp. 1120-1124, (2003)
[66]  
Romero Perez A., Rivas Velasco A., Adherence to Mediterranean diet and bone health, Nutricion Hospitalaria, 29, 5, pp. 989-996, (2014)
[67]  
Saeys Y., Inza I., Larranaga P., A review of feature selection techniques in bioinformatics, Bioinformatics, 23, 19, pp. 2507-2517, (2007)
[68]  
Samworth R.J., Optimal weighted nearest neighbour classifiers, Annals of Statistics, 40, 5, pp. 2733-2763, (2012)
[69]  
Savanelli M.C., Barrea L., Macchia P.E., Savastano S., Falco A., Renzullo A., Scarano E., Nettore I.C., Colao A., Di Somma C., Preliminary results demonstrating the impact of Mediterranean diet on bone health, Journal of Translational Medicine, 15, 1, (2017)
[70]  
Serra-Majem L., Roman B., Estruch R., Scientific evidence of interventions using the Mediterranean diet: A systematic review, Nutrition Reviews, 64, 2, pp. S27-S47, (2006)