Identification of predictive factors of the degree of adherence to the Mediterranean diet through machine-learning techniques

被引:0
作者
Arceo-Vilas A. [1 ]
Fernandez-Lozano C. [2 ,3 ]
Pita S. [1 ]
Pértega-Díaz S. [1 ]
Pazos A. [2 ,3 ]
机构
[1] Clinical Epidemiology and Biostat. Res. Group, Inst. de Investigacion Biomedica de A Coruna (INIBIC), Complexo Hospitalario Universitario de A Coruña (CHUAC), SERGAS, Universidade da Coruña, A Coruña
[2] Department of Computer Science and Information Technologies, Faculty of Computer Science, CITIC-Research Center of Information and Communication Technologies, Universidade da Coruña, A Coruña
[3] Redes de Neuronas Artificiales y Sistemas Adaptativos. Imagen Medica y Diagnostico Radiologico, Inst. de Investigacion Biomedica de A Coruna(INIBIC),Complexo Hospitalario Univ. de A Coruna (CHUAC), SERGAS, Universidade da Coruña, A Coruña
来源
Fernandez-Lozano, Carlos (carlos.fernandez@udc.es) | 1600年 / PeerJ Inc.卷 / 06期
关键词
Feature selection; Machine learning; Mediterranean diet; Nutrition disorders; Nutritional status; Support vector machines;
D O I
10.7717/PEERJ-CS.287
中图分类号
学科分类号
摘要
Food consumption patterns have undergone changes that in recent years have resulted in serious health problems. Studies based on the evaluation of the nutritional status have determined that the adoption of a food pattern-based primarily on a Mediterranean diet (MD) has a preventive role, as well as the ability to mitigate the negative effects of certain pathologies. A group of more than 500 adults aged over 40 years from our cohort in Northwestern Spain was surveyed. Under our experimental design, 10 experiments were run with four different machine-learning algorithms and the predictive factors most relevant to the adherence of a MD were identified. A feature selection approach was explored and under a null hypothesis test, it was concluded that only 16 measures were of relevance, suggesting the strength of this observational study. Our findings indicate that the following factors have the highest predictive value in terms of the degree of adherence to the MD: basal metabolic rate, mini nutritional assessment questionnaire total score, weight, height, bone density, waist-hip ratio, smoking habits, age, EDI-OD, circumference of the arm, activity metabolism, subscapular skinfold, subscapular circumference in cm, circumference of the waist, circumference of the calf and brachial area. © 2020 Arceo-Vilas et al.
引用
收藏
页码:1 / 21
页数:20
相关论文
共 87 条
  • [21] Cortes C., Vapnik V., Support-vector networks, Machine Learning, 20, pp. 273-297, (1995)
  • [22] Cristianini N., Shawe-Taylor J., An introduction to support vector machines: And other kernelbased learning methods, (2000)
  • [23] Cutillas A.B., Herrero E., de San Eustaquio A., Zamora S., Perez-Llamas F., Prevalencia de peso insuficiente, sobrepeso y obesidad, ingesta de energía y perfil calórico de la dieta de estudiantes universitarios de la comunidad autónoma de la región de Murcia (Espana), Nutricion Hospitalaria, 28, 3, pp. 683-689, (2013)
  • [24] de la Montana Miguelez J., Cobas N., Rodriguez M., Miguez Bernardez M., Castro Sobrino L., Adherencia a la dieta mediterranea y su relación con el índice de masa corporal en universiarios de Galicia, Nutrición Clínica y Dietética Hospitalaria, 32, 3, pp. 72-80, (2012)
  • [25] de Vinaspre O.P., Oronoz M., SNOMED CT in a language isolate: An algorithm for a semiautomatic translation, BMC Medical Informatics and Decision Making, 15, (2015)
  • [26] Della Camera P.A., Morselli S., Cito G., Tasso G., Cocci A., Laruccia N., Travaglini F., Del Fabbro D., Mottola A.R., Gacci M., Serni S., Carini M., Natali A., Sexual health, adherence to Mediterranean diet, body weight, physical activity and mental state: Factors correlated to each other, Urologia Journal, 84, 4, pp. 221-225, (2017)
  • [27] Downer M.K., Gea A., Stampfer M., Sanchez-Tainta A., Corella D., Salas-Salvado J., Ros E., Estruch R., Fito M., Gomez-Gracia E., Aros F., Fiol M., De-la Corte F.J.G., Serra-Majem L., Pinto X., Basora J., Sorli J.V., Vinyoles E., Zazpe I., Martinez-Gonzalez M.-A., Predictors of short-and long-term adherence with a Mediterranean-type diet intervention: The PREDIMED randomized trial, International Journal of Behavioral Nutrition and Physical Activity, 13, 1, (2016)
  • [28] Evidencia actual sobre los beneficios de la dieta mediterrânea en salud, Artículo de Revisión Rev Med chileRev Med Chile, 144, 144, pp. 1044-1052, (2016)
  • [29] Diaz-Uriarte R., de Andres S.A., Gene selection and classification of microarray data using random forest, BMC Bioinformatics, 7, 1, (2006)
  • [30] Espina A., Ortego M.A., de Alda I.O., Yenes F., Aleman A., La imagen corporal en los trastornos alimentarios, Body Shape in Eating Disorders, 13, 4, pp. 533-538, (2001)