Multi-step ahead tourism demand forecasting: The perspective of the learning using privileged information paradigm

被引:0
|
作者
Sun, Shaolong [1 ]
Li, Mingchen [2 ,3 ]
Wang, Shouyang [2 ,3 ,4 ]
Zhang, Chengyuan [5 ]
机构
[1] School of Management, Xi'an Jiaotong University, Xi'an,710049, China
[2] Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing,100190, China
[3] School of Economics and Management, University of Chinese Academy of Sciences, Beijing,100190, China
[4] Center for Forecasting Science, Chinese Academy of Sciences, Beijing,100190, China
[5] School of Economics and Management, Xidian University, Xi'an,710126, China
关键词
Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 33 条
  • [1] Multi-step ahead tourism demand forecasting: The perspective of the learning using privileged information paradigm
    Sun, Shaolong
    Li, Mingchen
    Wang, Shouyang
    Zhang, Chengyuan
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 210
  • [2] Multi-step ahead forecasting of daily reference evapotranspiration using deep learning
    Ferreira, Lucas Borges
    da Cunha, Fernando Franca
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 178
  • [3] Multi-Step Ahead Ex-Ante Forecasting of Air Pollutants Using Machine Learning
    Gocheva-Ilieva, Snezhana
    Ivanov, Atanas
    Kulina, Hristina
    Stoimenova-Minova, Maya
    MATHEMATICS, 2023, 11 (07)
  • [4] A new learning paradigm: Learning using privileged information
    Vapnik, Vladimir
    Vashist, Akshay
    NEURAL NETWORKS, 2009, 22 (5-6) : 544 - 557
  • [5] A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting
    da Silva, Ramon Gomes
    Dal Molin Ribeiro, Matheus Henrique
    Moreno, Sinvaldo Rodrigues
    Mariani, Viviana Cocco
    Coelho, Leandro dos Santos
    ENERGY, 2021, 216
  • [6] Univariate model for hour ahead multi-step solar irradiance forecasting
    Gupta, Priya
    Singh, Rhythm
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 494 - 501
  • [7] Machine-learning-based multi-step heat demand forecasting in a district heating system
    Potocnik, Primoz
    Skerl, Primoz
    Govekar, Edvard
    ENERGY AND BUILDINGS, 2021, 233
  • [8] Multi-step wind energy forecasting in the Mexican Isthmus using machine and deep learning
    Galarza-Chavez, Angel A.
    Martinez-Rodriguez, Jose L.
    Dominguez-Cruz, Rene Fernando
    Lopez-Garza, Esmeralda
    Rios-Alvarado, Ana B.
    ENERGY REPORTS, 2025, 13 : 1 - 15
  • [9] A multi-energy meta-model strategy for multi-step ahead energy load forecasting
    Mystakidis, Aristeidis
    Ntozi, Evangelia
    Koukaras, Paraskevas
    Katsaros, Nikolaos
    Ioannidis, Dimosthenis
    Tjortjis, Christos
    Tzovaras, Dimitrios
    ELECTRICAL ENGINEERING, 2025,
  • [10] Multi-step ahead time series forecasting via sparse coding and dictionary based techniques
    Helmi, Ahmed
    Fakhr, Mohamed W.
    Atiya, Amir F.
    APPLIED SOFT COMPUTING, 2018, 69 : 464 - 474