A review on leukemia detection and classification using Artificial Intelligence-based techniques

被引:2
|
作者
Aby A.E. [1 ]
Salaji S. [2 ]
Anilkumar K.K. [1 ]
Rajan T. [3 ]
机构
[1] Department of Electronics & Communication, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[2] Department of Mechanical Engineering, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[3] Senior Resident, Department of Pathology, Believers Church Medical College Hospital, St. Thomas Nagar, P.O. Box-31, Kuttapuzha, Thiruvalla, Kerala State, Pathanamthitta District
关键词
Deep learning; Leukemia; Machine learning; Review;
D O I
10.1016/j.compeleceng.2024.109446
中图分类号
学科分类号
摘要
Leukemia is a type of cancer affecting blood-forming tissues, where timely diagnosis is crucial for early intervention and better treatment outcomes. Traditional detection methods are time-intensive, laborious, and depend on skilled manual examination of bone marrow or peripheral blood smears. However, research in automated leukemia detection has significantly advanced with the development of sophisticated image processing techniques using Machine Learning (ML) and Deep Learning (DL) approaches. This literature review analyzes recent studies on automated leukemia detection, utilizing various specimens such as gene expression data, images of bone marrow, and peripheral blood smears. It also provides a list of public repositories offering access to these datasets. The reviewed articles are sourced from reputable databases like ScienceDirect, Springer, IEEE Xplore, Wiley, and others, covering the period from 2018 to 2023. The review examines the specificity of the field of study, techniques, classifiers, optimizers, platforms, and datasets used in the referenced articles. Findings indicate the efficacy of both ML and DL techniques, with DL often surpassing traditional ML methods. Diverse datasets, innovative feature selection, and optimization techniques have further enhanced leukemia detection and classification methodologies, highlighting ongoing advancements in the field. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [21] Artificial Intelligence-Based Early Detection of Dengue Using CBC Data
    Riya, Nusrat Jahan
    Chakraborty, Mritunjoy
    Khan, Riasat
    IEEE ACCESS, 2024, 12 : 112355 - 112367
  • [22] Implementation of Artificial Intelligence-Based Fault Classification and Anomaly Detection: A Case Study on Hydraulic Centrifugal Pumps
    Turk, Mehmet Can
    Kazemi, Zahra
    Andersen, Peter Rindom
    Lemming, Jakob
    Larsen, Peter Gorm
    2024 IEEE 19TH CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, ICIEA 2024, 2024,
  • [23] Breast cancer detection using artificial intelligence techniques: A systematic literature review
    Nassif, Ali Bou
    Abu Talib, Manar
    Nasir, Qassim
    Afadar, Yaman
    Elgendy, Omar
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 127
  • [24] Artificial Intelligence-Based Technique for Fault Detection and Diagnosis of EV Motors: A Review
    Lang, Wangjie
    Hu, Yihua
    Gong, Chao
    Zhang, Xiaotian
    Xu, Hui
    Deng, Jiamei
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2022, 8 (01) : 384 - 406
  • [25] Artificial intelligence-based techniques for adulteration and defect detections in food and agricultural industry: A review
    Othman, Suhaili
    Mavani, Nidhi Rajesh
    Hussain, M. A.
    Abd Rahman, Norliza
    Ali, Jarinah Mohd
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2023, 12
  • [26] Artificial intelligence-based radiomics models in endometrial cancer: A systematic review
    Lecointre, Lise
    Dana, Jeremy
    Lodi, Massimo
    Akladios, Cherif
    Gallix, Benoit
    EJSO, 2021, 47 (11): : 2734 - 2741
  • [27] Accuracy of Artificial Intelligence-Based Photographic Detection of Gingivitis
    Chau, Reinhard Chun Wang
    Li, Guan-Hua
    Tew, In Meei
    Thu, Khaing Myat
    McGrath, Colman
    Lo, Wai-Lun
    Ling, Wing-Kuen
    Hsung, Richard Tai-Chiu
    Lam, Walter Yu Hang
    INTERNATIONAL DENTAL JOURNAL, 2023, 73 (05) : 724 - 730
  • [28] Artificial intelligence-based ultrasound elastography for disease evaluation - a narrative review
    Zhang, Xian-Ya
    Wei, Qi
    Wu, Ge-Ge
    Tang, Qi
    Pan, Xiao-Fang
    Chen, Gong-Quan
    Zhang, Di
    Dietrich, Christoph F.
    Cui, Xin-Wu
    FRONTIERS IN ONCOLOGY, 2023, 13
  • [29] Automatic detection of knee osteoarthritis grading using artificial intelligence-based methods
    Yildirim, Muhammed
    Mutlu, Hursit Burak
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (02)
  • [30] Artificial Intelligence-Based Detection of Pneumonia in Chest Radiographs
    Becker, Judith
    Decker, Josua A.
    Roemmele, Christoph
    Kahn, Maria
    Messmann, Helmut
    Wehler, Markus
    Schwarz, Florian
    Kroencke, Thomas
    Scheurig-Muenkler, Christian
    DIAGNOSTICS, 2022, 12 (06)