A review on leukemia detection and classification using Artificial Intelligence-based techniques

被引:2
|
作者
Aby A.E. [1 ]
Salaji S. [2 ]
Anilkumar K.K. [1 ]
Rajan T. [3 ]
机构
[1] Department of Electronics & Communication, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[2] Department of Mechanical Engineering, Cochin University College of Engineering Kuttanad, Cochin University of Science And Technology, Pulincunnu P.O., Kerala State, Alappuzha District
[3] Senior Resident, Department of Pathology, Believers Church Medical College Hospital, St. Thomas Nagar, P.O. Box-31, Kuttapuzha, Thiruvalla, Kerala State, Pathanamthitta District
关键词
Deep learning; Leukemia; Machine learning; Review;
D O I
10.1016/j.compeleceng.2024.109446
中图分类号
学科分类号
摘要
Leukemia is a type of cancer affecting blood-forming tissues, where timely diagnosis is crucial for early intervention and better treatment outcomes. Traditional detection methods are time-intensive, laborious, and depend on skilled manual examination of bone marrow or peripheral blood smears. However, research in automated leukemia detection has significantly advanced with the development of sophisticated image processing techniques using Machine Learning (ML) and Deep Learning (DL) approaches. This literature review analyzes recent studies on automated leukemia detection, utilizing various specimens such as gene expression data, images of bone marrow, and peripheral blood smears. It also provides a list of public repositories offering access to these datasets. The reviewed articles are sourced from reputable databases like ScienceDirect, Springer, IEEE Xplore, Wiley, and others, covering the period from 2018 to 2023. The review examines the specificity of the field of study, techniques, classifiers, optimizers, platforms, and datasets used in the referenced articles. Findings indicate the efficacy of both ML and DL techniques, with DL often surpassing traditional ML methods. Diverse datasets, innovative feature selection, and optimization techniques have further enhanced leukemia detection and classification methodologies, highlighting ongoing advancements in the field. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] A Review of Artificial Intelligence-Based Dyslexia Detection Techniques
    Alkhurayyif, Yazeed
    Sait, Abdul Rahaman Wahab
    DIAGNOSTICS, 2024, 14 (21)
  • [2] A Review of Artificial Intelligence-Based Down Syndrome Detection Techniques
    Shaikh, Mujeeb Ahmed
    Al-Rawashdeh, Hazim Saleh
    Sait, Abdul Rahaman Wahab
    LIFE-BASEL, 2025, 15 (03):
  • [3] Network intrusion detection system: A survey on artificial intelligence-based techniques
    Habeeb, Mohammed Sayeeduddin
    Babu, T. Ranga
    EXPERT SYSTEMS, 2022, 39 (09)
  • [4] Artificial intelligence-based techniques for analysis of body cavity fluids: a review
    Mir, Aftab Ahmad
    Sarwar, Abid
    ARTIFICIAL INTELLIGENCE REVIEW, 2021, 54 (06) : 4019 - 4061
  • [5] Artificial intelligence-based techniques for analysis of body cavity fluids: a review
    Aftab Ahmad Mir
    Abid Sarwar
    Artificial Intelligence Review, 2021, 54 : 4019 - 4061
  • [6] Artificial intelligence-based classification of echocardiographic views
    Naser, Jwan A.
    Lee, Eunjung
    Pislaru, Sorin, V
    Tsaban, Gal
    Malins, Jeffrey G.
    Jackson, John, I
    Anisuzzaman, D. M.
    Rostami, Behrouz
    Lopez-Jimenez, Francisco
    Friedman, Paul A.
    Kane, Garvan C.
    Pellikka, Patricia A.
    Attia, Zachi, I
    EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2024, 5 (03): : 260 - 269
  • [7] Cancer Prognosis Using Artificial Intelligence-Based Techniques
    Surbhi Gupta
    Yogesh Kumar
    SN Computer Science, 2022, 3 (1)
  • [8] Review of artificial intelligence-based bridge damage detection
    Zhang, Yang
    Yuen, Ka-Veng
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (09)
  • [9] Potential of Artificial Intelligence-Based Techniques for Rainfall Forecasting in Thailand: A Comprehensive Review
    Waqas, Muhammad
    Humphries, Usa Wannasingha
    Wangwongchai, Angkool
    Dechpichai, Porntip
    Ahmad, Shakeel
    WATER, 2023, 15 (16)
  • [10] Diagnostic Performance of Artificial Intelligence-Based Methods for Tuberculosis Detection: Systematic Review
    Hansun, Seng
    Argha, Ahmadreza
    Bakhshayeshi, Ivan
    Wicaksana, Arya
    Alinejad-Rokny, Hamid
    Fox, Greg J.
    Liaw, Siaw-Teng
    Celler, Branko G.
    Marks, Guy B.
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2025, 27