Dynamic visual SLAM based on probability screening and weighting for deep features

被引:4
|
作者
Fu, Fuji [1 ]
Yang, Jinfu [1 ,2 ]
Ma, Jiaqi [1 ]
Zhang, Jiahui [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intelligen, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Visual SLAM; Deep feature; Probability screening and weighting; Dynamic environments; Pose estimation; RGB-D SLAM; RECONSTRUCTION; ENVIRONMENTS; BENCHMARK; TRACKING;
D O I
10.1016/j.measurement.2024.115127
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most Simultaneous Localization and Mapping (SLAM) systems highly rely on static environments assumption, leading to low pose estimation accuracy in dynamic environments. Dynamic Visual SLAM (VSLAM) methods have exhibited remarkable advantages in eliminating negative effects of dynamic elements. However, most current methods, only built on traditional indirect VSLAM using hand-crafted features, are still inadequate in utilizing and processing deep features. To this end, this paper proposes a dynamic VSLAM algorithm based on probability screening and weighting for deep features. Specifically, a deep feature extraction module is designed to generate deep features leveraged in the overall pipeline. Then, probability screening and weighting scheme is proposed for processing deep features, through which the dynamic deep feature points are eliminated in a coarse-to-fine manner and the various contributions of static ones is distinguished. Sufficient quantitative and qualitative experiments prove that our proposed method is superior to other counterparts in terms of localization accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Deep learning-based visual slam for indoor dynamic scenes
    Xu, Zhendong
    Song, Yong
    Pang, Bao
    Xu, Qingyang
    Yuan, Xianfeng
    APPLIED INTELLIGENCE, 2025, 55 (06)
  • [12] A Survey of Deep Learning Application in Dynamic Visual SLAM
    Lai, Dongcheng
    Zhang, Yunjian
    Li, Congduan
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 279 - 283
  • [13] CFP-SLAM: A Real-time Visual SLAM Based on Coarse-to-Fine Probability in Dynamic Environments
    Hu, Xinggang
    Zhang, Yunzhou
    Cao, Zhenzhong
    Ma, Rong
    Wu, Yanmin
    Deng, Zhiqiang
    Sun, Wenkai
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 4399 - 4406
  • [14] DXSLAM: A Robust and Efficient Visual SLAM System with Deep Features
    Li, Dongjiang
    Shi, Xuesong
    Long, Qiwei
    Liu, Shenghui
    Yang, Wei
    Wang, Fangshi
    Wei, Qi
    Qiao, Fei
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 4958 - 4965
  • [15] Survey of Visual SLAM Based on Deep Learning
    Huang Z.
    Shao C.
    Jiqiren/Robot, 2023, 45 (06): : 756 - 768
  • [16] Visual SLAM Algorithm Based on ORB Features and Line Features
    Yu, Zhuoyun
    Min, Huasong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3003 - 3008
  • [17] DN-SLAM: A Visual SLAM With ORB Features and NeRF Mapping in Dynamic Environments
    Ruan, Chenyu
    Zang, Qiuyu
    Zhang, Kehua
    Huang, Kai
    IEEE SENSORS JOURNAL, 2024, 24 (04) : 5279 - 5287
  • [18] Dynamic-SLAM: Semantic monocular visual localization and mapping based on deep learning in dynamic environment
    Xiao, Linhui
    Wang, Jinge
    Qiu, Xiaosong
    Rong, Zheng
    Zou, Xudong
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2019, 117 : 1 - 16
  • [19] Visual SLAM Based on Dynamic Object Detection
    Chen, Bocheng
    Peng, Gang
    He, Dingxin
    Zhou, Cheng
    Hu, Bin
    PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 5966 - 5971
  • [20] Dynamic SLAM: A Visual SLAM in Outdoor Dynamic Scenes
    Wen, Shuhuan
    Li, Xiongfei
    Liu, Xin
    Li, Jiaqi
    Tao, Sheng
    Long, Yidan
    Qiu, Tony
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72