Proximity spin-orbit coupling in a small-diameter armchair carbon nanotube on monolayer bismuthene

被引:2
作者
Kurpas M. [1 ]
机构
[1] Institute of Physics, University of Silesia in Katowice, Chorzów
关键词
The authors thank M. Marganska-Lyzniak; M; Gmitra; Milivojević; and J. Fabian for fruitful discussions. The authors acknowledge support from the Interdisciplinary Centre for Mathematical and Computational Modelling (ICM); University of Warsaw (UW); under Grant No. GA84-43. The project is cofinanced by the National Center for Research and Development (NCBR) under the V4-Japan project BGapEng V4-JAPAN/2/46/BGapEng/2022;
D O I
10.1103/PhysRevB.108.195408
中图分类号
学科分类号
摘要
We study the spin-orbit proximity effects in a hybrid heterostructure built from a one-dimensional (1D) armchair carbon nanotube and two-dimensional (2D) buckled monolayer bismuthene. We show, by performing first-principles calculations, that Dirac electrons in the nanotube exhibit large spin-orbit coupling due to the close vicinity of bismuthene. The calculated low-energy band structure and the spin texture of the proximitized nanotube display a strong dependence on the position of the nanotube on the substrate, similar to the twist-angle dependence found in 2D heterostructures. Based on the first-principles results, we formulate an effective low-energy Hamiltonian of the nanotube, and we identify key interactions governing the proximity spin-orbit coupling. The proximity-induced spin splitting of Dirac cone bands is in the meV range, confirming an efficient transfer of spin-orbit coupling from bismuthene to the nanotube. © 2023 American Physical Society.
引用
收藏
相关论文
共 72 条
  • [1] Novoselov K. S., Mishchenko A., Carvalho A., Neto A. H. C., Science, 353, (2016)
  • [2] Zutic I., Matos-Abiague A., Scharf B., Dery H., Belashchenko K., Mater. Today, 22, (2019)
  • [3] Avsar A., Ochoa H., Guinea F., Ozyilmaz B., van Wees B. J., Vera-Marun I. J., Rev. Mod. Phys, 92, (2020)
  • [4] Gmitra M., Konschuh S., Ertler C., Ambrosch-Draxl C., Fabian J., Phys. Rev. B, 80, (2009)
  • [5] Sichau J., Prada M., Anlauf T., Lyon T. J., Bosnjak B., Tiemann L., Blick R. H., Phys. Rev. Lett, 122, (2019)
  • [6] Avsar A., Tan J. Y., Taychatanapat T., Balakrishnan J., Koon G. K. W., Yeo Y., Lahiri J., Carvalho A., Rodin A. S., O'Farrell E. C. T., Eda G., Castro Neto A. H., Ozyilmaz B., Nat. Commun, 5, (2014)
  • [7] Gmitra M., Fabian J., Phys. Rev. B, 92, (2015)
  • [8] Gmitra M., Kochan D., Hogl P., Fabian J., Phys. Rev. B, 93, (2016)
  • [9] Safeer C. K., Ingla-Aynes J., Herling F., Garcia J. H., Vila M., Ontoso N., Calvo M. R., Roche S., Hueso L. E., Casanova F., Nano Lett, 19, (2019)
  • [10] Bychkov Y., Rashba E., Pis'ma Zh. Eksp. Teor. Fiz, 39, (1984)