Skin-CAD: Explainable deep learning classification of skin cancer from dermoscopic images by feature selection of dual high-level CNNs features and transfer learning

被引:9
|
作者
Attallah O. [1 ,2 ]
机构
[1] Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandri
[2] Wearables, Biosensing, and Biosignal Processing Laboratory, Arab Academy for Science, Technology and Maritime Transport, Alexandria
关键词
Convolutional neural networks; Deep learning; Dermoscopic imaging; Feature fusion; Feature selection; Principal component analysis; Skin cancer diagnosis;
D O I
10.1016/j.compbiomed.2024.108798
中图分类号
学科分类号
摘要
Skin cancer (SC) significantly impacts many individuals' health all over the globe. Hence, it is imperative to promptly identify and diagnose such conditions at their earliest stages using dermoscopic imaging. Computer-aided diagnosis (CAD) methods relying on deep learning techniques especially convolutional neural networks (CNN) can effectively address this issue with outstanding outcomes. Nevertheless, such black box methodologies lead to a deficiency in confidence as dermatologists are incapable of comprehending and verifying the predictions that were made by these models. This article presents an advanced an explainable artificial intelligence (XAI) based CAD system named “Skin-CAD” which is utilized for the classification of dermoscopic photographs of SC. The system accurately categorises the photographs into two categories: benign or malignant, and further classifies them into seven subclasses of SC. Skin-CAD employs four CNNs of different topologies and deep layers. It gathers features out of a pair of deep layers of every CNN, particularly the final pooling and fully connected layers, rather than merely depending on attributes from a single deep layer. Skin-CAD applies the principal component analysis (PCA) dimensionality reduction approach to minimise the dimensions of pooling layer features. This also reduces the complexity of the training procedure compared to using deep features from a CNN that has a substantial size. Furthermore, it combines the reduced pooling features with the fully connected features of each CNN. Additionally, Skin-CAD integrates the dual-layer features of the four CNNs instead of entirely depending on the features of a single CNN architecture. In the end, it utilizes a feature selection step to determine the most important deep attributes. This helps to decrease the general size of the feature set and streamline the classification process. Predictions are analysed in more depth using the local interpretable model-agnostic explanations (LIME) approach. This method is used to create visual interpretations that align with an already existing viewpoint and adhere to recommended standards for general clarifications. Two benchmark datasets are employed to validate the efficiency of Skin-CAD which are the Skin Cancer: Malignant vs. Benign and HAM10000 datasets. The maximum accuracy achieved using Skin-CAD is 97.2 % and 96.5 % for the Skin Cancer: Malignant vs. Benign and HAM10000 datasets respectively. The findings of Skin-CAD demonstrate its potential to assist professional dermatologists in detecting and classifying SC precisely and quickly. © 2024 Elsevier Ltd
引用
收藏
相关论文
共 50 条
  • [1] Machine Learning and Deep Learning Algorithms for Skin Cancer Classification from Dermoscopic Images
    Bechelli, Solene
    Delhommelle, Jerome
    BIOENGINEERING-BASEL, 2022, 9 (03):
  • [2] Deep Ensemble Learning for Skin Lesion Classification from Dermoscopic Images
    Shahin, Ahmed H.
    Kamal, Ahmed
    Elattar, Mustafa A.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 150 - 153
  • [3] Skin cancer and deep learning for dermoscopic images classification: A pilot study.
    Belaala, Abir
    Bourezane, Yazid
    Terrissa, Labib Sadek
    Al Masry, Zeina
    Zerhouni, Noureddine
    JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [4] SKIN LESION CLASSIFICATION FROM DERMOSCOPIC IMAGES USING DEEP LEARNING TECHNIQUES
    Lopez, Adria Romero
    Giro-i-Nieto, Xavier
    Burdick, Jack
    Marques, Oge
    2017 13TH IASTED INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING (BIOMED), 2017, : 49 - 54
  • [5] Classification of Skin Cancer Lesions Using Explainable Deep Learning
    Rehman, Muhammad Zia Ur
    Ahmed, Fawad
    Alsuhibany, Suliman A.
    Jamal, Sajjad Shaukat
    Ali, Muhammad Zulfiqar
    Ahmad, Jawad
    SENSORS, 2022, 22 (18)
  • [6] Multi Class Skin Diseases Classification Based On Dermoscopic Skin Images Using Deep Learning
    Patel, Manojkumar B.
    INTERNATIONAL JOURNAL OF NEXT-GENERATION COMPUTING, 2022, 13 (02): : 151 - 161
  • [7] Deep Learning and Transfer Learning for Skin Cancer Segmentation and Classification
    Li, Lin
    Seo, Wonseok
    2021 IEEE 21ST INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (IEEE BIBE 2021), 2021,
  • [8] Skin Cancer Classification using Deep Learning and Transfer Learning
    Hosny, Khalid M.
    Kassem, Mohamed A.
    Foaud, Mohamed M.
    2018 9TH CAIRO INTERNATIONAL BIOMEDICAL ENGINEERING CONFERENCE (CIBEC), 2018, : 90 - 93
  • [9] A customized deep learning framework for skin lesion classification using dermoscopic images
    Sahoo, Sandhya Rani
    Dash, Ratnakar
    Mohapatra, Ramesh Kumar
    COMPUTER ANIMATION AND VIRTUAL WORLDS, 2023, 34 (05)
  • [10] Machine Learning Approaches for Skin Cancer Classification from Dermoscopic Images: A Systematic Review
    Grignaffini, Flavia
    Barbuto, Francesco
    Piazzo, Lorenzo
    Troiano, Maurizio
    Simeoni, Patrizio
    Mangini, Fabio
    Pellacani, Giovanni
    Cantisani, Carmen
    Frezza, Fabrizio
    ALGORITHMS, 2022, 15 (11)