Development of an Algorithm for Multicriteria Optimization of Deep Learning Neural Networks

被引:0
|
作者
Alexandrov I.A. [1 ]
Kirichek A.V. [2 ]
Kuklin V.Z. [1 ]
Chervyakov L.M. [1 ]
机构
[1] IDTI RAS Institute for Design-Technological Informatics of RAS, Moscow
来源
HighTech and Innovation Journal | 2023年 / 4卷 / 01期
关键词
Feature Selection; Genetic Algorithms; Hybrid Co-Evolutionary Algorithm; Multicriteria Optimization; Neural Networks;
D O I
10.28991/HIJ-2023-04-01-011
中图分类号
学科分类号
摘要
Nowadays, machine learning methods are actively used to process big data. A promising direction is neural networks, in which structure optimization occurs on the principles of self-configuration. Genetic algorithms are applied to solve this nontrivial problem. Most multicriteria evolutionary algorithms use a procedure known as non-dominant sorting to rank decisions. However, the efficiency of procedures for adding points and updating rank values in non-dominated sorting (incremental non-dominated sorting) remains low. In this regard, this research improves the performance of these algorithms, including the condition of an asynchronous calculation of the fitness of individuals. The relevance of the research is determined by the fact that although many scholars and specialists have studied the self-tuning of neural networks, they have not yet proposed a comprehensive solution to this problem. In particular, algorithms for efficient non-dominated sorting under conditions of incremental and asynchronous updates when using evolutionary methods of multicriteria optimization have not been fully developed to date. To achieve this goal, a hybrid co-evolutionary algorithm was developed that significantly outperforms all algorithms included in it, including error-back propagation and genetic algorithms that operate separately. The novelty of the obtained results lies in the fact that the developed algorithms have minimal asymptotic complexity. The practical value of the developed algorithms is associated with the fact that they make it possible to solve applied problems of increased complexity in a practically acceptable time. © Authors retain all copyrights.
引用
收藏
页码:157 / 173
页数:16
相关论文
共 50 条
  • [31] INTEGRATION OF MULTICRITERIA METHODS USING NEURAL NETWORKS
    HANNE, T
    OR SPEKTRUM, 1994, 16 (04) : 277 - 283
  • [32] QLP: Deep Q-Learning for Pruning Deep Neural Networks
    Camci, Efe
    Gupta, Manas
    Wu, Min
    Lin, Jie
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (10) : 6488 - 6501
  • [33] Padding Module: Learning the Padding in Deep Neural Networks
    Alrasheedi, Fahad
    Zhong, Xin
    Huang, Pei-Chi
    IEEE ACCESS, 2023, 11 : 7348 - 7357
  • [34] Learning accelerator of deep neural networks with logarithmic quantization
    Ueki, Takeo
    Iwai, Keisuke
    Matsubara, Takashi
    Kurokawa, Takakazu
    2018 7TH INTERNATIONAL CONGRESS ON ADVANCED APPLIED INFORMATICS (IIAI-AAI 2018), 2018, : 634 - 638
  • [35] IMPROVED MUSIC FEATURE LEARNING WITH DEEP NEURAL NETWORKS
    Sigtia, Siddharth
    Dixon, Simon
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [36] Cryptocurrency forecasting with deep learning chaotic neural networks
    Lahmiri, Salim
    Bekiros, Stelios
    CHAOS SOLITONS & FRACTALS, 2019, 118 : 35 - 40
  • [37] Deep learning electromagnetic inversion with convolutional neural networks
    Puzyrev, Vladimir
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 218 (02) : 817 - 832
  • [38] Biosignals learning and synthesis using deep neural networks
    David Belo
    João Rodrigues
    João R. Vaz
    Pedro Pezarat-Correia
    Hugo Gamboa
    BioMedical Engineering OnLine, 16
  • [39] Deep learning neural network (DLNN)-based classification and optimization algorithm for organ inflammation disease diagnosis
    Basha, A. Alavudeen
    Ali, Azath Mubarak
    Parthasarathy, P.
    Tayfour, Omer Elsier
    Changalasetty, Suresh Babu
    Shujauddin, Mohammed
    SOFT COMPUTING, 2023,
  • [40] Biosignals learning and synthesis using deep neural networks
    Belo, David
    Rodrigues, Joao
    Vaz, Joao R.
    Pezarat-Correia, Pedro
    Gamboa, Hugo
    BIOMEDICAL ENGINEERING ONLINE, 2017, 16