Optimizing Neural Networks for Academic Performance Classification Using Feature Selection and Resampling Approach

被引:0
作者
Supriyadi D. [1 ,4 ]
Purwanto P. [1 ,2 ]
Warsito B. [3 ]
机构
[1] Doctorate Program of Information Systems, School of Postgraduate Studies, Universitas Diponegoro, Semarang
[2] Department of Chemical Engineering, Faculty of Engineering, Universitas Diponegoro, Semarang
[3] Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro, Semarang
[4] Department of Information System, Faculty of Informatics, Institut Teknologi Telkom Purwokerto, Banyumas
关键词
Academic Performance; Family; Feature Selection; Imbalanced Dataset; Neural Network; Personality; Resampling Approach; Service Quality;
D O I
10.13164/mendel.2023.2.261
中图分类号
学科分类号
摘要
The features present in large datasets significantly affect the performance of machine learning models. Redundant and irrelevant features will be rejected and cause a decrease in machine learning model performance. This paper proposes HyFeS-ROS-ANN: Hybrid Feature Selection and Resampling combination method for binary classification using artificial neural network multilayer perceptron (MLP). The first stage of this approach is to use a combination of two feature selection methods to select essential features that are highly correlated with model performance. The second stage of this approach is to use a combination of resampling methods to handle unbalanced data classes. Both approaches are applied to the academic performance classification model using the MLP neural network. This research dataset is obtained using three-dimensional (3D) frameworks such as the Big Five Personality to determine the Personality that affects academic performance from the student dimension, the Family Influence Scale (FIS), which measures factors that affect academic performance from the family dimension, and Higher Education Institutions Service Quality (HEISQUAL) to measure service quality and its influence on academic performance from the Education institution dimension. Previous research shows that the CoR-ANN algorithm has a model accuracy rate of 94%. The research results based on the dataset show that our proposed method can improve accuracy by selecting more relevant and essential features in improving model performance. The results show that the features are reduced from 135 to 108, while the HyFS-ROS-ANN model for binary classification accuracy increases to 100%. © 2023, Brno University of Technology. All rights reserved.
引用
收藏
页码:261 / 272
页数:11
相关论文
共 50 条
  • [41] An expert model for self-care problems classification using probabilistic neural network and feature selection approach
    Bushehri, S. M. M. Fatemi
    Zarchi, Mohsen Sardari
    APPLIED SOFT COMPUTING, 2019, 82
  • [42] A new feature selection approach for optimizing prediction models, applied to breast cancer subtype classification
    Pham Quang Huy
    Ngom, Alioune
    Rueda, Luis
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1535 - 1541
  • [43] Optimizing cancer classification: a hybrid RDO-XGBoost approach for feature selection and predictive insights
    Yaqoob, Abrar
    Verma, Navneet Kumar
    Aziz, Rabia Musheer
    Shah, Mohd Asif
    CANCER IMMUNOLOGY IMMUNOTHERAPY, 2024, 73 (12)
  • [44] An Optimize Gene Selection Approach for Cancer Classification Using Hybrid Feature Selection Methods
    Dass, Sayantan
    Mistry, Sujoy
    Sarkar, Pradyut
    Paik, Pradip
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2021, 2022, 1534 : 751 - 764
  • [45] A hybridised feature selection approach in molecular classification using CSO and GA
    Elsawy, Ahmed
    Selim, Mazen M.
    Sobhy, Mahmoud
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2019, 59 (02) : 165 - 174
  • [46] Data Classification Using Feature Selection And kNN Machine Learning Approach
    Begum, Shemim
    Chakraborty, Debasis
    Sarkar, Ram
    2015 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND COMMUNICATION NETWORKS (CICN), 2015, : 811 - 814
  • [47] Image Classification for Feature Selection Using Radial Basis Function Neural Network for Classification (RBFNNC)
    Siddamallappa, Kumar U.
    Gandhewar, Nisarg
    JOURNAL OF ALGEBRAIC STATISTICS, 2022, 13 (02) : 844 - 850
  • [48] Algorithm learning based neural network integrating feature selection and classification
    Yoon, Hyunsoo
    Park, Cheong-Sool
    Kim, Jun Seok
    Baek, Jun-Geol
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (01) : 231 - 241
  • [49] Feature Selection and Extraction for Graph Neural Networks
    Acharya, Deepak Bhaskar
    Zhang, Huaming
    ACMSE 2020: PROCEEDINGS OF THE 2020 ACM SOUTHEAST CONFERENCE, 2020, : 252 - 255
  • [50] Improving performance of classification on incomplete data using feature selection and clustering
    Cao Truong Tran
    Zhang, Mengjie
    Andreae, Peter
    Xue, Bing
    Lam Thu Bui
    APPLIED SOFT COMPUTING, 2018, 73 : 848 - 861