Pseudo amino acid feature-based protein function prediction using support vector machine and K-nearest neighbors

被引:0
|
作者
Deen A.J. [1 ]
Gyanchandani M. [1 ]
机构
[1] Department of Computer Science and Engineering, Maulana Azad National Institute of Technology, Bhopal
来源
| 1600年 / Science and Information Organization卷 / 11期
关键词
Classifiers; KNN; Membrane protein types; PseAAC; Random forest; SVM (RBF);
D O I
10.14569/IJACSA.2020.0110922
中图分类号
学科分类号
摘要
Bioinformatics facing the vital challenge in protein function prediction due to protein data are available in primary structure, an amino acid sequence. Every protein cell sequence length and size are in different sequence order. Protein is available in 20 amino acid sequence alphabetic order; however, the corresponding information of the membrane protein sequence is insufficient to capture the function and structures of a protein from primary sequence datasets. A challenging task to correctly identify protein structure and function from amino acid sequence. The basic principle of PseAAC (Pseudo Amino Acid Composition) is to generate a discrete number of every protein samples. In each protein, sequence length varies due to protein functions. Some protein sequence length is less than 50, and some are large. Due to this, different sizes of the amino acid sample are chances to lose sequence order information. PseAAC feature generates a fixed size descriptor value in vector space to overcome sequence information loss and is used to further systematic evolution. Therefore machine learning computational tool synthesizes accurate identification of structure and function class of membrane protein. In this study, SVM (Support Vector Machine) and KNN (K-nearest neighbors) based prediction classifier used to identifying membrane protein and their types. © 2020, Science and Information Organization.
引用
收藏
页码:187 / 195
页数:8
相关论文
共 50 条
  • [1] Pseudo Amino Acid Feature-Based Protein Function Prediction using Support Vector Machine and K-Nearest Neighbors
    Deen, Anjna Jayant
    Gyanchandani, Manasi
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (09) : 187 - 195
  • [2] Prediction of Breast Cancer Using Support Vector Machine and K-Nearest Neighbors
    Islam, Md. Milon
    Iqbal, Hasib
    Haque, Md. Rezwanul
    Hasan, Md. Kamrul
    2017 IEEE REGION 10 HUMANITARIAN TECHNOLOGY CONFERENCE (R10-HTC), 2017, : 226 - 229
  • [3] A COMBINATION OF SUPPORT VECTOR MACHINE AND k-NEAREST NEIGHBORS FOR MACHINE FAULT DETECTION
    Andre, Amaury B.
    Beltrame, Eduardo
    Wainer, Jacques
    APPLIED ARTIFICIAL INTELLIGENCE, 2013, 27 (01) : 36 - 49
  • [4] Concrete Strength Prediction Using Machine Learning Methods CatBoost, k-Nearest Neighbors, Support Vector Regression
    Beskopylny, Alexey N.
    Stel'makh, Sergey A.
    Shcherban', Evgenii M.
    Mailyan, Levon R.
    Meskhi, Besarion
    Razveeva, Irina
    Chernil'nik, Andrei
    Beskopylny, Nikita
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [5] Support vector machine combined with K-nearest neighbors for solar flare forecasting
    Li, Rong
    Wang, Hua-Ning
    He, Han
    Cui, Yan-Mei
    Du, Zhan-Le
    CHINESE JOURNAL OF ASTRONOMY AND ASTROPHYSICS, 2007, 7 (03): : 441 - 447
  • [7] Student Performance Prediction Using Support Vector Machine and K-Nearest Neighbor
    Al-Shehri, Huda
    Al-Qarni, Amani
    Al-Saati, Leena
    Batoaq, Arwa
    Badukhen, Haifa
    Alrashed, Saleh
    Alhiyafi, Jamal
    Olatunji, Sunday O.
    2017 IEEE 30TH CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (CCECE), 2017,
  • [8] Microscopic retinal blood vessels detection and segmentation using support vector machine and K-nearest neighbors
    Rehman, Amjad
    Harouni, Majid
    Karimi, Mohsen
    Saba, Tanzila
    Bahaj, Saeed Ali
    Awan, Mazar Javed
    MICROSCOPY RESEARCH AND TECHNIQUE, 2022, 85 (05) : 1899 - 1914
  • [9] A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction
    Chen, Yingjun
    Hao, Yongtao
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 80 : 340 - 355
  • [10] K-nearest neighbor based structural twin support vector machine
    Pan, Xianli
    Luo, Yao
    Xu, Yitian
    KNOWLEDGE-BASED SYSTEMS, 2015, 88 : 34 - 44