共 32 条
[1]
Church J., Clark P., Cazenave A., Gregory J., Jevrejeva S., Levermann A., Merrifield M., Milne G., Nerem R., Nunn P., Payne A., Pfeffer W., Stammer D., Unnikrishnan A., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 1137-1216, (2013)
[2]
Portner H.-O., Roberts D., Masson-Delmotte V., Zhai P., Tignor M., Poloczanska E., Mintenbeck K., Alegria A., Nicolai M., Okem A., Petzold J., Rama B., Weyer N.E., IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, (2019)
[3]
Larour E., Seroussi H., Morlighem M., Rignot E., Continental scale, high order, high spatial resolution, ice sheet modeling using the Ice Sheet System Model (ISSM), J. Geophys. Res., Earth Surf., 117, (2012)
[4]
Petra N., Zhu H., Stadler G., Hughes T.J.R., Ghattas O., An inexact Gauss-Newton method for inversion of basal sliding and rheology parameters in a nonlinear Stokes ice sheet model, J. Glaciol., 58, pp. 889-903, (2012)
[5]
Brinkerhoff D.J., Johnson J.V., Data assimilation and prognostic whole ice sheet modelling with the variationally derived, higher order, open source, and fully parallel ice sheet model VarGlaS, Cryosphere, 7, pp. 1161-1184, (2013)
[6]
Gagliardini O., Zwinger T., Et al., Capabilities and performance of Elmer/Ice, a new generation ice-sheet model, Geosci. Model Dev., 6, pp. 1299-1318, (2013)
[7]
Burman E., Claus S., Hansbo P., Larson M.G., Massing A., Cutfem: discretizing geometry and partial differential equations, Int. J. Numer. Methods Eng., 104, pp. 472-501, (2015)
[8]
Fries T.-P., Belytschko T., The extended/generalized finite element method: an overview of the method and its applications, Int. J. Numer. Methods Eng., 84, pp. 253-304, (2010)
[9]
Nitsche J., Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hamb., 36, pp. 9-15, (1971)
[10]
Hansbo A., Hansbo P., An unfitted finite element method, based on Nitsche's method, for elliptic interface problems, Comput. Methods Appl. Mech. Eng., 191, pp. 5537-5552, (2002)