Heisenberg Uncertainty Principle for n-Dimensional Linear Canonical Transforms

被引:0
|
作者
Li Y. [1 ]
Zhang C. [2 ]
Sun H. [3 ]
机构
[1] School of Science, Zhengzhou University of Aeronautics, Zhengzhou
[2] 11th Research Institute of China Electronics Technology Group Corporation, Beijing
[3] School of Mathematics and Statistics, Beijing Institute of Technology, Beijing
来源
Journal of Beijing Institute of Technology (English Edition) | 2021年 / 30卷 / 03期
关键词
Heisenberg uncertainty principle; Linear canonical transforms; Pitt inequality;
D O I
10.15918/j.jbit1004-0579.2021.032
中图分类号
学科分类号
摘要
The uncertainty principle proposed by German physicist Heisenberg in 1927 is a basic principle of quantum mechanics and signal processing. Since linear canonical transformation has been widely used in various fields of signal processing recently and Heisenberg uncertainty principle has been endowed with new expressive meaning in linear canonical transforms domain, in this manuscript, an improved Heisenberg uncertainty principle is obtained in linear canonical transforms domain. © 2021 Editorial Department of Journal of Beijing Institute of Technology.
引用
收藏
页码:249 / 253
页数:4
相关论文
共 50 条
  • [31] The remainder in Weyl's law for n-dimensional Heisenberg manifolds
    Khosravi, M
    Petridis, YN
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (12) : 3561 - 3571
  • [32] On the residuation principle of n-dimensional R-implications
    Rosana Zanotelli
    Bruno Moura
    Renata Reiser
    Benjamin Bedregal
    Soft Computing, 2022, 26 : 8403 - 8426
  • [33] On the residuation principle of n-dimensional R-implications
    Zanotelli, Rosana
    Moura, Bruno
    Reiser, Renata
    Bedregal, Benjamin
    SOFT COMPUTING, 2022, 26 (17) : 8403 - 8426
  • [34] Palatini variational principle for N-dimensional dilaton gravity
    Classical and Quantum Gravity, 15 (05):
  • [35] Palatini variational principle for N-dimensional dilaton gravity
    Burton, H
    Mann, RB
    CLASSICAL AND QUANTUM GRAVITY, 1998, 15 (05) : 1375 - 1385
  • [36] Sharper N-D Heisenberg's Uncertainty Principle
    Zhang, Zhichao
    Shi, Xiya
    Wu, Anyang
    Li, Dong
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 1665 - 1669
  • [37] An uncertainty principle for Hankel transforms
    Rösler, M
    Voit, M
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (01) : 183 - 194
  • [38] Heisenberg's uncertainty principle
    Busch, Paul
    Heinonen, Teiko
    Lahti, Pekka
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 452 (06): : 155 - 176
  • [39] HEISENBERG UNCERTAINTY PRINCIPLE AND FREE WILL
    MORENO, A
    PROCEEDINGS OF THE AMERICAN CATHOLIC PHILOSOPHICAL ASSOCIATION, 1976, 50 : 14 - 23
  • [40] The Heisenberg uncertainty principle.
    Schrodinger, E
    SITZUNGSBERICHTE DER PREUSSICHEN AKADEMIE DER WISSENSCHAFTEN PHYSIKALISCH-MATHEMATISCHE KLASSE, 1930, : 296 - 303