Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data

被引:0
|
作者
Sarkar, Sobhan [1 ]
Pramanik, Anima [1 ]
Maiti, J. [1 ]
Reniers, Genserik [2 ]
机构
[1] Sarkar, Sobhan
[2] Pramanik, Anima
[3] Maiti, J.
[4] Reniers, Genserik
来源
Sarkar, Sobhan (sobhan.sarkar@gmail.com) | 1600年 / Elsevier B.V., Netherlands卷 / 125期
关键词
116;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] Machine learning-based approach for disease severity classification of carpal tunnel syndrome
    Dougho Park
    Byung Hee Kim
    Sang-Eok Lee
    Dong Young Kim
    Mansu Kim
    Heum Dai Kwon
    Mun-Chul Kim
    Ae Ryoung Kim
    Hyoung Seop Kim
    Jang Woo Lee
    Scientific Reports, 11
  • [42] Machine learning-based approach for disease severity classification of carpal tunnel syndrome
    Park, Dougho
    Kim, Byung Hee
    Lee, Sang-Eok
    Kim, Dong Young
    Kim, Mansu
    Kwon, Heum Dai
    Kim, Mun-Chul
    Kim, Ae Ryoung
    Kim, Hyoung Seop
    Lee, Jang Woo
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] Machine Learning-Based Screening for Potential Singlet Fission Chromophores: The Challenge of Imbalanced Data Sets
    Borislavov, Lyuben
    Nedyalkova, Miroslava
    Tadjer, Alia
    Aydemir, Onder
    Romanova, Julia
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (45): : 10103 - 10112
  • [44] Machine learning-based sensitivity of steel frames with highly imbalanced and high-dimensional data
    Koh, Hyeyoung
    Blum, Hannah B.
    Engineering Structures, 2022, 259
  • [45] Machine Learning-Based Automatic Classification of Knee Osteoarthritis Severity Using Gait Data and Radiographic Images
    Bin Kwon, Soon
    Han, Hyuk-Soo
    Lee, Myung Chul
    Kim, Hee Chan
    Ku, Yunseo
    Ro, Du Hyun
    IEEE ACCESS, 2020, 8 : 120597 - 120603
  • [46] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Magi Andorra
    Ana Freire
    Irati Zubizarreta
    Nicole Kerlero de Rosbo
    Steffan D. Bos
    Melanie Rinas
    Einar A. Høgestøl
    Sigrid A. de Rodez Benavent
    Tone Berge
    Synne Brune-Ingebretse
    Federico Ivaldi
    Maria Cellerino
    Matteo Pardini
    Gemma Vila
    Irene Pulido-Valdeolivas
    Elena H. Martinez-Lapiscina
    Sara Llufriu
    Albert Saiz
    Yolanda Blanco
    Eloy Martinez-Heras
    Elisabeth Solana
    Priscilla Bäcker-Koduah
    Janina Behrens
    Joseph Kuchling
    Susanna Asseyer
    Michael Scheel
    Claudia Chien
    Hanna Zimmermann
    Seyedamirhosein Motamedi
    Josef Kauer-Bonin
    Alex Brandt
    Julio Saez-Rodriguez
    Leonidas G. Alexopoulos
    Friedemann Paul
    Hanne F. Harbo
    Hengameh Shams
    Jorge Oksenberg
    Antonio Uccelli
    Ricardo Baeza-Yates
    Pablo Villoslada
    Journal of Neurology, 2024, 271 : 1133 - 1149
  • [47] Predicting disease severity in multiple sclerosis using multimodal data and machine learning
    Andorra, Magi
    Freire, Ana
    Zubizarreta, Irati
    de Rosbo, Nicole Kerlero
    Bos, Steffan D.
    Rinas, Melanie
    Hogestol, Einar A.
    Benavent, Sigrid A. de Rodez
    Berge, Tone
    Brune-Ingebretse, Synne
    Ivaldi, Federico
    Cellerino, Maria
    Pardini, Matteo
    Vila, Gemma
    Pulido-Valdeolivas, Irene
    Martinez-Lapiscina, Elena H.
    Llufriu, Sara
    Saiz, Albert
    Blanco, Yolanda
    Martinez-Heras, Eloy
    Solana, Elisabeth
    Baecker-Koduah, Priscilla
    Behrens, Janina
    Kuchling, Joseph
    Asseyer, Susanna
    Scheel, Michael
    Chien, Claudia
    Zimmermann, Hanna
    Motamedi, Seyedamirhosein
    Kauer-Bonin, Josef
    Brandt, Alex
    Saez-Rodriguez, Julio
    Alexopoulos, Leonidas G.
    Paul, Friedemann
    Harbo, Hanne F.
    Shams, Hengameh
    Oksenberg, Jorge
    Uccelli, Antonio
    Baeza-Yates, Ricardo
    Villoslada, Pablo
    JOURNAL OF NEUROLOGY, 2024, 271 (03) : 1133 - 1149
  • [48] Machine Learning-Based Severity Classification of Spinal Cord Injury Patients Using Straight Leg Raising Test
    Yoshikura, Ryoto
    Izumi, Shintaro
    Sugimoto, Tatsuya
    Kawaguchi, Hiroshi
    2022 IEEE SENSORS, 2022,
  • [49] Towards Predicting System Disruption in Industry 4.0: Machine Learning-Based Approach
    Brik, Bouziane
    Bettayeb, Belgacem
    Sahnoun, M'hammed
    Duval, Fabrice
    10TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2019) / THE 2ND INTERNATIONAL CONFERENCE ON EMERGING DATA AND INDUSTRY 4.0 (EDI40 2019) / AFFILIATED WORKSHOPS, 2019, 151 : 667 - 674
  • [50] A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis
    Mezzatesta, Sabrina
    Torino, Claudia
    De Meo, Pasquale
    Fiumara, Giacomo
    Vilasi, Antonio
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 177 : 9 - 15