Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data

被引:0
|
作者
Sarkar, Sobhan [1 ]
Pramanik, Anima [1 ]
Maiti, J. [1 ]
Reniers, Genserik [2 ]
机构
[1] Sarkar, Sobhan
[2] Pramanik, Anima
[3] Maiti, J.
[4] Reniers, Genserik
来源
Sarkar, Sobhan (sobhan.sarkar@gmail.com) | 1600年 / Elsevier B.V., Netherlands卷 / 125期
关键词
116;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data
    Sarkar, Sobhan
    Pramanik, Anima
    Maiti, J.
    Reniers, Genserik
    SAFETY SCIENCE, 2020, 125
  • [2] A genetic algorithm-based approach for class-imbalanced learning
    Dong, Shangyan
    Wu, Yongcheng
    THIRD INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION, 2018, 10828
  • [3] A Weakly Supervised Learning-Based Oversampling Framework for Class-Imbalanced Fault Diagnosis
    Qian, Min
    Li, Yan-Fu
    IEEE TRANSACTIONS ON RELIABILITY, 2022, 71 (01) : 429 - 442
  • [4] Prediction of Smoking Habits From Class-Imbalanced Saliva Microbiome Data Using Data Augmentation and Machine Learning
    Lopez, Celia Diez
    Gonzalez, Diego Montiel
    Vidaki, Athina
    Kayser, Manfred
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [5] RDPVR: Random Data Partitioning with Voting Rule for Machine Learning from Class-Imbalanced Datasets
    Hassanat, Ahmad B.
    Tarawneh, Ahmad S.
    Abed, Samer Subhi
    Altarawneh, Ghada Awad
    Alrashidi, Malek
    Alghamdi, Mansoor
    ELECTRONICS, 2022, 11 (02)
  • [6] Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis
    Wu, Jingyao
    Zhao, Zhibin
    Sun, Chuang
    Yan, Ruqiang
    Chen, Xuefeng
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 216
  • [7] Effective data-balancing methods for class-imbalanced genotoxicity datasets using machine learning algorithms and molecular fingerprints
    Bae, Su-Yong
    Lee, Jonga
    Jeong, Jaeseong
    Lim, Changwon
    Choi, Jinhee
    COMPUTATIONAL TOXICOLOGY, 2021, 20
  • [8] Distress classification of class-imbalanced inspection data via correlation maximizing weighted extreme learning machine
    Maeda, Keisuke
    Takahashi, Sho
    Ogawa, Takahiro
    Haseyama, Miki
    ADVANCED ENGINEERING INFORMATICS, 2018, 37 : 79 - 87
  • [9] Deep learning approach for defective spot welds classification using small and class-imbalanced datasets
    Dai, Wei
    Li, Dayong
    Tang, Ding
    Wang, Huamiao
    Peng, Yinghong
    NEUROCOMPUTING, 2022, 477 : 46 - 60
  • [10] Learning from class-imbalanced data using misclassification-focusing generative adversarial networks
    Yun, Jaesub
    Lee, Jong-Seok
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 240