Semi-Resistive Approach for Tightly Coupled Dipole Array Bandwidth Enhancement

被引:19
作者
Carvalho M. [1 ]
Johnson A.D. [1 ]
Alwan E.A. [1 ]
Volakis J.L. [1 ]
机构
[1] Department of Electrical and Computer Engineering, Florida International University, Miami, FL
来源
IEEE Open Journal of Antennas and Propagation | 2021年 / 2卷
关键词
bandwidth enhancement; frequency selective surface (FSS) network; phased array; Tightly coupled dipole array (TCDA); ultra-wideband (UWB) array; wide-angle impedance matching (WAIM);
D O I
10.1109/OJAP.2020.3047494
中图分类号
学科分类号
摘要
A new approach to enhance the bandwidth of Tightly Coupled Dipole Arrays (TCDA) is presented. The new design achieves the integration of a semi-resistive Frequency Selective Surface network (FSS) composed of a non-resistive low-pass FSS and two resistive band-stop FSSs. The integration of this FSS network within a dual-polarized Tightly Coupled Dipole Array (TCDA) led to an increased impedance bandwidth of 28:1 from 0.20GHz to 5.6GHz. Notably, the use of an FSS superstrate allowed for scanning down to 60° at VSWR < 3 in the E-plane and VSWR < 4 in the D- and H-planes. Additionally, the strategic use of the inserted low-pass FSS reduces the resistive effects above 2.5GHz for improved average efficiency. A array prototype was fabricated and tested to verify the bandwidth and gain of a finite array. The simulated radiation efficiency was demonstrated to be 83%, on average, across the band. © 2020 IEEE.
引用
收藏
页码:110 / 117
页数:7
相关论文
共 28 条
  • [11] Cavallo D., Syed W.H., Neto A., Connected-slot array with artificial dielectrics: A 6 to 15 GHz dual-pol wide-scan prototype, Ieee Trans. Antennas Propag, 66, 6, pp. 3201-3206, (2018)
  • [12] Van Katwijk A., Cavallo D., Analysis and design of connected slot arrays with artificial dielectrics, Proc Ieee Int. Symp. Phased Array Syst. Technol. (PAST), pp. 1-5, (2019)
  • [13] Doane J.P., Sertel K., Volakis J.L., Bandwidth limits for lossless, reciprocal PEC-backed arrays of arbitrary polarization, Ieee Trans. Antennas Propag, 62, 5, pp. 2531-2542, (2014)
  • [14] Logan J.T., Kindt R.W., Vouvakis M.N., A 1.2-12 GHz sliced notch antenna array, Ieee Trans. Antennas Propag, 66, 4, pp. 1818-1826, (2018)
  • [15] Logan J.T., Kindt R.W., Vouvakis M.N., Low crosspolarization vivaldi arrays, Ieee Trans. Antennas Propag, 66, 4, pp. 1827-1837, (2018)
  • [16] Kindt R.W., Logan J.T., Dual-polarized metal-flare sliced notch antenna array, Ieee Trans. Antennas Propag, 68, 4, pp. 2666-2674, (2020)
  • [17] Erdemli Y.E., Sertel K., Gilbert R.A., Wright D.E., Volakis J.L., Frequency-selective surfaces to enhance performance of broad-band reconfigurable arrays, Ieee Trans. Antennas Propag, 50, 12, pp. 1716-1724, (2002)
  • [18] Moulder W.F., Sertel K., Volakis J.L., Superstrate-enhanced ultrawideband tightly coupled array with resistive FSS, Ieee Trans. Antennas Propag, 60, 9, pp. 4166-4172, (2012)
  • [19] Papantonis D.K., Volakis J.L., Dual-polarized tightly coupled array with substrate loading, Ieee Antennas Wireless Propag. Lett, 15, pp. 325-328, (2015)
  • [20] Smith N.J., Papantonis D., Volakis J.L., Bandwidth reconfigurable metamaterial arrays, Int. J. Antennas Propag, 2014, (2014)