Metal-organic framework-based nanomaterials for CO2 storage: A review

被引:0
作者
Do H.H. [1 ]
Rabani I. [2 ]
Truong H.B. [3 ,4 ]
机构
[1] VKTech Research Center, NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City
[2] Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul
[3] Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City
[4] Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City
关键词
CO[!sub]2[!/sub] storage; metal-organic frameworks; nanomaterials; open metal sites; pore size;
D O I
10.3762/BJNANO.14.79
中图分类号
学科分类号
摘要
The increasing recognition of the impact of CO2 emissions as a global concern, directly linked to the rise in global temperature, has raised significant attention. Carbon capture and storage, particularly in association with adsorbents, has occurred as a pivotal approach to address this pressing issue. Large surface area, high porosity, and abundant adsorption sites make metal-organic frameworks (MOFs) promising contenders for CO2 uptake. This review commences by discussing recent advancements in MOFs with diverse adsorption sites, encompassing open metal sites and Lewis basic centers. Next, diverse strategies aimed at enhancing CO2 adsorption capabilities are presented, including pore size manipulation, post-synthetic modifications, and composite formation. Finally, the extant challenges and anticipated prospects pertaining to the development of MOF-based nanomaterials for CO2 storage are described. © 2023 Do et al.; licensee Beilstein-Institut.
引用
收藏
页码:964 / 970
页数:6
相关论文
共 43 条
[1]  
Chen P., Wu Y., Rufford T. E., Wang L, Wang G., Wang Z., Mater. Today Chem, 27, (2023)
[2]  
Yin Z., Liu X., Chen S., Ma T., Li Y., Energy Environ. Mater, 6, (2023)
[3]  
Isikgor F. H., Zhumagali S., Merino L. V. T., De Bastiani M., McCulloch I., De Wolf S., Waf. Rev. Mater, 8, pp. 89-108, (2023)
[4]  
Pandey S., Karakoti M., Bhardwaj D., Tatrari G., Sharma R., Pandey L., Lee M.-J., Sahoo N. G., Nanoscale Adv, 5, pp. 1492-1526, (2023)
[5]  
Xu H., Li J., Chu X., Chem. Rec, 23, (2023)
[6]  
Li J.-R., Ma Y., McCarthy M. C, Sculley J., Yu J., Jeong H.-K., Balbuena P. B., Zhou H.-C., Coord. Chem. Rev, 255, pp. 1791-1823, (2011)
[7]  
Xiang S., He Y., Zhang Z., Wu H., Zhou W., Krishna R., Chen B., Waf. Commun, 3, (2012)
[8]  
Grant T., Guinan A., Shih C. Y., Lin S., Vikara D., Morgan D., Remson D., Int. J. Greenhouse Gas Confro, 72, pp. 175-191, (2018)
[9]  
Leung D. Y. C, Caramanna G., Maroto-Valer M. M., Renewable Sustainable Energy Rev, 39, pp. 426-443, (2014)
[10]  
Vikara D., Shih C. Y., Lin S., Guinan A., Grant T., Morgan D., Remson D., J. Sustainable Energy Eng, 5, pp. 307-340, (2017)