Bilayer Halide Electrolytes for All-Inorganic Solid-State Lithium-Metal Batteries with Excellent Interfacial Compatibility

被引:0
|
作者
Deng, Zhi [1 ]
Jin, Zhou [2 ]
Chen, Diancheng [1 ]
Ni, Dixing [1 ]
Tian, Mengyu [2 ]
Zhan, Yuanjie [2 ]
Li, Shuai [1 ]
Sun, Yang [4 ]
Huang, Xuejie [2 ,3 ]
Zhao, Yusheng [1 ]
机构
[1] Department of Physics and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen,518055, China
[2] Songshan Lake Materials Laboratory, Dongguan,523808, China
[3] Institute of Physics, Chinese Academy of Sciences, Beijing,100190, China
[4] School of Materials, Sun Yat-sen University, Guangzhou,510275, China
来源
ACS Applied Materials and Interfaces | 2022年 / 14卷 / 43期
基金
中国国家自然科学基金;
关键词
Anodes - Lithium batteries - Lithium compounds - Metal halides - Metals - Solid electrolytes - Solid-State Batteries - Thermodynamic stability;
D O I
暂无
中图分类号
学科分类号
摘要
Inorganic solid-state electrolytes (ISSEs) have been extensively researched as the critical component in all-solid-state lithium-metal batteries (ASSLMBs). Many ISSEs exhibit high ionic conductivities up to 10-3 S cm-1. However, most of them suffer from poor interfacial compatibility with electrodes, especially lithium-metal anodes, limiting their application in high-performance ASSLMBs. To achieve good interfacial compatibility with a high-voltage cathode and a lithium-metal anode simultaneously, we propose Li3InCl6/Li2OHCl bilayer halide ISSEs with complementary advantages. In addition to the improved interfacial compatibility, the Li3InCl6/Li2OHCl bilayer halide ISSEs exhibit good thermal stability up to 160 °C. The Li-symmetric cells with sandwich electrolytes Li2OHCl/Li3InCl6/Li2OHCl exhibit long cycling life of over 300 h and a high critical current density of over 0.6 mA cm-2 at 80 °C. Moreover, the all-inorganic solid-state lithium-metal batteries (AISSLMBs) LiFePO4-Li3InCl6/Li3InCl6/Li2OHCl/Li fabricated by a facile cold-press method exhibit good rate performance and long-term cycling stability that stably cycle for about 3000 h at 80 °C. This work presents a facile and cost-effective method to construct bilayer halide ISSEs, enabling the development of high-performance AISSLMBs with good interfacial compatibility and thermal stability. © 2022 American Chemical Society.
引用
收藏
页码:48619 / 48626
相关论文
共 50 条
  • [21] Air Stability and Interfacial Compatibility of Sulfide Solid Electrolytes for Solid-State Lithium Batteries: Advances and Perspectives
    Cai, Yinghui
    Li, Chunli
    Zhao, Zhikun
    Mu, Daobin
    Wu, Borong
    CHEMELECTROCHEM, 2022, 9 (05)
  • [22] Temperature-dependent compatibility study on halide solid-state electrolytes in solid-state batteries
    Jia, Gaoshuai
    Deng, Zhi
    Ni, Dixing
    Ji, Zhaoran
    Chen, Diancheng
    Zhang, Xinxin
    Wang, Tao
    Li, Shuai
    Zhao, Yusheng
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [23] Electrochemical Compatibility of Solid-State Electrolytes with Cathodes and Anodes for All-Solid-State Lithium Batteries: A Review
    Chen, Xiao
    Xie, Jian
    Zhao, Xinbing
    Zhu, Tiejun
    ADVANCED ENERGY AND SUSTAINABILITY RESEARCH, 2021, 2 (05):
  • [24] Universal Copolymerization of Crosslinked Polyether Electrolytes for All-Solid-State Lithium-Metal Batteries
    Lei, Chengjun
    Zhou, Tiankun
    Zhang, Mingjie
    Liu, Tingting
    Xu, Chen
    Wang, Rui
    He, Xin
    Liang, Xiao
    ADVANCED SCIENCE, 2024, 11 (36)
  • [25] The role of polymers in lithium solid-state batteries with inorganic solid electrolytes
    Sen, Sudeshna
    Trevisanello, Enrico
    Niemoeller, Elard
    Shi, Bing-Xuan
    Simon, Fabian J.
    Richter, Felix H.
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (35) : 18701 - 18732
  • [26] Perovskite Solid-State Electrolytes for Lithium Metal Batteries
    Yan, Shuo
    Yim, Chae-Ho
    Pankov, Vladimir
    Bauer, Mackenzie
    Baranova, Elena
    Weck, Arnaud
    Merati, Ali
    Abu-Lebdeh, Yaser
    BATTERIES-BASEL, 2021, 7 (04):
  • [27] Fluorinated coating stabilizing halide solid electrolytes for all-solid-state lithium metal batteries
    Liu, Hong
    Li, Yang
    Dong, Chenxin
    Yuan, Haocheng
    Yu, Dengfeng
    Ding, Peipei
    Li, Yue
    Cao, Rongchuan
    Wu, Qian
    Liang, Ying
    Luo, Hanlin
    Qin, Zuoyu
    Gao, Lei
    Ren, Yaoyu
    Fan, Li-Zhen
    Nan, Ce-Wen
    ENERGY STORAGE MATERIALS, 2025, 75
  • [28] Cell failures of all-solid-state lithium metal batteries with inorganic solid electrolytes: Lithium dendrites
    Ke, Xinyou
    Wang, Yan
    Dai, Liming
    Yuan, Chris
    ENERGY STORAGE MATERIALS, 2020, 33 : 309 - 328
  • [29] Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries
    Huang, Honglan
    Liu, Chao
    Liu, Ziya
    Wu, Yunyan
    Liu, Yifan
    Fan, Jinbo
    Zhang, Gen
    Xiong, Pan
    Zhu, Junwu
    ADVANCED POWDER MATERIALS, 2024, 3 (01):
  • [30] Promises, Challenges, and Recent Progress of Inorganic Solid-State Electrolytes for All-Solid-State Lithium Batteries
    Gao, Zhonghui
    Sun, Huabin
    Fu, Lin
    Ye, Fangliang
    Zhang, Yi
    Luo, Wei
    Huang, Yunhui
    ADVANCED MATERIALS, 2018, 30 (17)