Emerging Spin-Orbit Torques in Low-Dimensional Dirac Materials

被引:3
作者
Medina Dueñas J. [1 ,2 ]
García J.H. [1 ]
Roche S. [1 ,3 ]
机构
[1] ICN2 - Catalan Institute of Nanoscience and Nanotechnology, Csic and Bist, Campus UAB, Bellaterra, Barcelona
[2] Department of Physics, Universitat Autònoma de Barcelona (UAB), Campus UAB, Bellaterra, Barcelona
[3] Icrea - Institució Catalana de Recerca i Estudis Avançats, Barcelona
关键词
D O I
10.1103/PhysRevLett.132.266301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report a theoretical description of novel spin-orbit torque components emerging in two-dimensional Dirac materials with broken inversion symmetry. In contrast to usual metallic interfaces where fieldlike and dampinglike torque components are competing, we find that an intrinsic dampinglike torque which derives from all Fermi-sea electrons can be simultaneously enhanced along with the fieldlike component. Additionally, hitherto overlooked torque components unique to Dirac materials emerge from the coupling between spin and pseudospin angular momenta, leading to spin-pseudospin entanglement. These torques are found to be resilient to disorder and could enhance the magnetic switching performance of nearby magnets. © 2024 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the "https://creativecommons.org/licenses/by/4.0/"Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
引用
收藏
相关论文
共 63 条
[1]  
Ando K., Takahashi S., Harii K., Sasage K., Ieda J., Maekawa S., Saitoh E., Electric manipulation of spin relaxation using the spin Hall effect, Phys. Rev. Lett, 101, (2008)
[2]  
Miron I. M., Gaudin G., Auffret S., Rodmacq B., Schuhl A., Pizzini S., Vogel J., Gambardella P., Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer, Nat. Mater, 9, (2010)
[3]  
Manchon A., Zelezny J., Miron I. M., Jungwirth T., Sinova J., Thiaville A., Garello K., Gambardella P., Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, Rev. Mod. Phys, 91, (2019)
[4]  
Yang H., Valenzuela S. O., Chshiev M., Couet S., Dieny B., Dlubak B., Fert A., Garello K., Jamet M., Jeong D.-E., Lee K., Lee T., Martin M.-B., Kar G. S., Seneor P., Shin H.-J., Roche S., Two-dimensional materials prospects for non-volatile spintronic memories, Nature (London), 606, (2022)
[5]  
Haney P. M., Lee H.-W., Lee K.-J., Manchon A., Stiles M. D., Current induced torques and interfacial spin-orbit coupling: Semiclassical modeling, Phys. Rev. B, 87, (2013)
[6]  
Ramaswamy R., Lee J. M., Cai K., Yang H., Recent advances in spin-orbit torques: Moving towards device applications, Appl. Phys. Rev, 5, (2018)
[7]  
Kim J., Sinha J., Hayashi M., Yamanouchi M., Fukami S., Suzuki T., Mitani S., Ohno H., Layer thickness dependence of the current-induced effective field vector in (Equation presented), Nat. Mater, 12, (2013)
[8]  
Ramaswamy R., Qiu X., Dutta T., Pollard S. D., Yang H., Hf thickness dependence of spin-orbit torques in (Equation presented) heterostructures, Appl. Phys. Lett, 108, (2016)
[9]  
Zhang W., Sklenar J., Hsu B., Jiang W., Jungfleisch M. B., Xiao J., Fradin F. Y., Liu Y., Pearson J. E., Ketterson J. B., Yang Z., Hoffmann A., Research Update: Spin transfer torques in permalloy on monolayer MoS2, APL Mater, 4, (2016)
[10]  
MacNeill D., Stiehl G. M., Guimaraes M. H. D., Buhrman R. A., Park J., Ralph D. C., Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers, Nat. Phys, 13, (2017)