Probabilistic intervals forecasting of wind power based on EMD weighted Markov chain QR method

被引:0
|
作者
Yang, Xiyun [1 ]
Ma, Xue [1 ]
Zhang, Yang [1 ]
Zhang, Huang [1 ]
Geng, Na [2 ]
机构
[1] School of Control and Computer Engineering, North China Electric Power University, Beijing,102206, China
[2] Jilin Electric Power Research Institute, Changchun,130021, China
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:66 / 72
相关论文
共 50 条
  • [21] Markov chain modeling for very-short-term wind power forecasting
    Carpinone, A.
    Giorgio, M.
    Langella, R.
    Testa, A.
    ELECTRIC POWER SYSTEMS RESEARCH, 2015, 122 : 152 - 158
  • [22] Probabilistic Wind Power Prediction Based on Ensemble Weather Forecasting
    Nohara, Daisuke
    Ohba, Masamichi
    Watanabe, Takeshi
    Kadokura, Shinji
    IFAC PAPERSONLINE, 2020, 53 (02): : 12151 - 12156
  • [23] Probabilistic wind power forecasting based on spiking neural network
    Wang, Huaizhi
    Xue, Wenli
    Liu, Yitao
    Peng, Jianchun
    Jiang, Hui
    ENERGY, 2020, 196
  • [24] Improved EMD-Based Complex Prediction Model for Wind Power Forecasting
    Abedinia, Oveis
    Lotfi, Mohamed
    Bagheri, Mehdi
    Sobhani, Behrouz
    Shafie-khah, Miadreza
    Catalao, Joao P. S.
    IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2020, 11 (04) : 2790 - 2802
  • [25] Wind Power Forecasting Based on LSTM Improved by EMD-PCA-RF
    Wang, Dongyu
    Cui, Xiwen
    Niu, Dongxiao
    SUSTAINABILITY, 2022, 14 (12)
  • [26] A farm-level wind power probabilistic forecasting method based on wind turbines clustering and heteroscedastic model
    Li, Yanting
    Wu, Zhenyu
    Wang, Peng
    Jiang, Wenbo
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2024, 16 (04)
  • [27] Probabilistic wind power forecasting using a novel hybrid intelligent method
    Moseyeb Afshari-Igder
    Taher Niknam
    Mohammad-Hassan Khooban
    Neural Computing and Applications, 2018, 30 : 473 - 485
  • [28] Probabilistic wind power forecasting using a novel hybrid intelligent method
    Afshari-Igder, Moseyeb
    Niknam, Taher
    Khooban, Mohammad-Hassan
    NEURAL COMPUTING & APPLICATIONS, 2018, 30 (02): : 473 - 485
  • [29] A Probabilistic Short-TermWater Demand Forecasting Model Based on the Markov Chain
    Gagliardi, Francesca
    Alvisi, Stefano
    Kapelan, Zoran
    Franchini, Marco
    WATER, 2017, 9 (07)
  • [30] A Wind Power Time Series Modeling Method Based on the Improved Markov Chain Monte Carlo Method
    Zhu C.
    Zhang Y.
    Yan Z.
    Zhu J.
    Zhao T.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2020, 35 (03): : 577 - 589