Excess polymer-assisted crystal growth method for high-performance perovskite photodetectors

被引:0
作者
Zhao H. [1 ]
Li T. [1 ]
Li J. [1 ]
Li Q. [1 ]
Wang S. [1 ]
Zheng C. [1 ]
Li J. [1 ]
Li M. [1 ]
Zhang Y. [1 ]
Yao J. [1 ]
机构
[1] School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin
基金
中国国家自然科学基金;
关键词
Perovskite; Photodetector; PMMA;
D O I
10.1016/j.jallcom.2022.164482
中图分类号
学科分类号
摘要
Defects in grain boundaries and at the surface of perovskite polycrystalline film lead to nonradiative recombination losses and ion migration, which seriously affects the performance and stability of optoelectronic devices. However, the process of passivation by using functional groups in polymers is expected to solve the problem. In this work, a tandem-like perovskite photodetector (PD) is developed, and an improved solution process is proposed to promote perovskite crystal growth and reduce the horizontal grain boundaries by using excess poly(methyl methacrylate) (PMMA) as anti-solvent. In addition, PMMA retained in perovskite grains acts as an interlayer for storing photocarriers, reducing the dark current and enhancing the PD gain. As a result, optimal perovskite PD exhibits a peak specific detectivity of 3.38 × 1012 Jones, a high responsivity of 5.65 A/W, a linear dynamic range of 80 dB, and an external quantum efficiency of 1321% under 532 nm illumination at the small bias of − 1 V. In addition, the PD has a fast response (5.90 μs rise time, 6.75 μs decay time). These results combine to provide a low-cost method for designing high-performance, ultrafast-response perovskite optoelectronic devices with low power consumption. © 2022
引用
收藏
相关论文
共 36 条
  • [1] Yu W., Sun X., Xiao M., Hou T., Liu X., Zheng B., Yu H., Zhang M., Huang Y., Hao X., Recent advances on interface engineering of perovskite solar cells, Nano Res., 15, pp. 85-103, (2022)
  • [2] Corzo D., Wang T., Gedda M., Yengel E., Khan J.I., Li R., Niazi M.R., Huang Z., Kim T., Baran D., A universal co-solvent evaporation strategy enables direct printing of perovskite single crystals for optoelectronic device applications, Adv. Mater., (2022)
  • [3] Zhang Z., Liu H., Tang Y., Aldamasy M., Yang F., Yang J., Tang X., Hu Y., Qin C., Li Z., Organic compound passivation for perovskite solar cells with improving stability and photoelectric performance, Sol. Energy, 231, pp. 414-419, (2022)
  • [4] Zhao X., Liu T., Loo Y.L., Advancing 2D perovskites for efficient and stable solar cells: challenges and opportunities, Adv. Mater., 34, (2022)
  • [5] Li T., Li Q., Tang X., Chen Z., Li Y., Zhao H., Wang S., Ding X., Zhang Y., Yao J., Low-toxicity antisolvent as a polar auxiliary agent for high-performance perovskite photodetectors, J. Phys. Chem. C., 125, pp. 2850-2859, (2021)
  • [6] Yang X., Ni Y., Zhang Y., Wang Y., Yang W., Luo D., Tu Y., Gong Q., Yu H., Zhu R., Multiple-defect management for efficient perovskite photovoltaics, ACS Energy Lett., 6, pp. 2404-2412, (2021)
  • [7] Lou Q., Han Y., Liu C., Zheng K., Zhang J., Chen X., Du Q., Chen C., Ge Z., π‐conjugated small molecules modified SnO<sub>2</sub> layer for perovskite solar cells with over 23% efficiency, Adv. Energy Mater., 11, (2021)
  • [8] Peng J., Walter D., Ren Y., Tebyetekerwa M., Wu Y., Duong T., Lin Q., Li J., Lu T., Mahmud M.A., Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells, Science, 371, pp. 390-395, (2021)
  • [9] Bi D., Yi C., Luo J., Decoppet J.-D., Zhang F., Zakeeruddin S.M., Li X., Hagfeldt A., Gratzel M., Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%, Nat. Energy, 1, (2016)
  • [10] Cho S.P., Lee H.J., Seo Y.H., Na S.I., Multifunctional passivation agents for improving efficiency and stability of perovskite solar cells: synergy of methyl and carbonyl groups, Appl. Surf. Sci., 575, (2022)