Cusp-to-core transition in low-mass dwarf galaxies induced by dynamical heating of cold dark matter by primordial black holes

被引:0
作者
Boldrini P. [1 ]
Miki Y. [2 ]
Wagner A.Y. [3 ]
Mohayaee R. [1 ]
Silk J. [1 ,4 ,5 ]
Arbey A. [6 ]
机构
[1] Institut d'Astrophysique de Paris, UMR 7095, Sorbonne Université, CNRS, 98 bis Boulevard Arago, Paris
[2] Information Technology Center, University of Tokyo, 5-1-5 Kashiwanoha, Chiba
[3] Center for Computional Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki
[4] Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, 21218, MD
[5] Beecroft Institute for Particle Astrophysics and Cosmology, Department of Physics, University of Oxford, Oxford
[6] Institut de Physique Nucléaire de Lyon, UMR 5822, Univ Lyon, Univ Lyon 1, CNRS/IN2P3, Villeurbanne
来源
Monthly Notices of the Royal Astronomical Society | 2020年 / 492卷 / 04期
关键词
Dark matter; Galaxies: Dwarf; Galaxies: Haloes; Galaxies: Kinematics and dynamics; Galaxies: Structure;
D O I
10.1093/MNRAS/STAA150
中图分类号
学科分类号
摘要
We performed a series of high-resolution N-body simulations to examine whether dark matter candidates in the form of primordial black holes (PBHs) can solve the cusp-core problem in low-mass dwarf galaxies. If some fraction of the dark matter in low-mass dwarf galaxies consists of PBHs and the rest is cold dark matter, dynamical heating of the cold dark matter by the PBHs induces a cusp-to-core transition in the total dark matter profile. The mechanism works for PBHs in the 25-100 M_ mass window, consistent with the Laser Interferometer Gravitational-Wave Observatory (LIGO) detections, but requires a lower limit on the PBH mass fraction of 1 per cent of the total dwarf galaxy dark matter content. The cusp-to-core transition time-scale is between 1 and 8 Gyr. This time-scale is also a constant multiple of the relaxation time between cold dark matter particles and PBHs, which depends on the mass, the mass fraction, and the scale radius of the initial density profile of PBHs. We conclude that dark matter cores occur naturally in haloes composed of cold dark matter and PBHs, without the need to invoke baryonic processes. © 2020 Oxford University Press. All rights reserved.
引用
收藏
页码:5218 / 5225
页数:7
相关论文
共 47 条
  • [1] Abbott B. P., Et al., Phys. Rev. Lett, 116, (2016)
  • [2] Amaro-Seoane P., Et al., (2017)
  • [3] Bergstrom L., Rep. Progress Phys, 63, (2000)
  • [4] Bertone G., Hooper D., Silk J., Phys. Rep, 405, (2005)
  • [5] Binney J., Tremaine S., Galactic Dynamics, (2008)
  • [6] Boylan-Kolchin M., Ma C.-P., MNRAS, 349, (2004)
  • [7] Brandt T. D., ApJ, 824, (2016)
  • [8] Bullock J. S., Boylan-Kolchin M., ARA&A, 55, (2017)
  • [9] Burkert A., ApJ, 447, (1995)
  • [10] Carr B., Raidal M., Tenkanen T., Vaskonen V., Veermae H., Phys. Rev. D, 96, (2017)