Microwave Dielectric Properties of Zn1-xCaxTi0.6Zr0.4Nb2O8 Ceramics

被引:0
|
作者
Xie Z. [1 ,3 ]
Huang Y. [1 ]
Li Y. [1 ,2 ,3 ]
Shen Z. [1 ,2 ]
Song F. [1 ]
Li Z. [1 ]
机构
[1] School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen, 333403, Jiangxi
[2] China National Light Industry Key Laboratory of Functional Ceramic Materials, Jingdezhen, 333403, Jiangxi
[3] Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, Jingdezhen, 333403, Jiangxi
来源
Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society | 2019年 / 47卷 / 03期
关键词
Calcium ion substitution; Dielectric properties; Microstructure; Microwave dielectric ceramic;
D O I
10.14062/j.issn.0454-5648.2019.03.07
中图分类号
学科分类号
摘要
Zn1-xCaxTi0.6Zr0.4Nb2O8(x = 0.05, 0.10, 0.20, 0.30) microwave dielectric ceramics were prepared by a solid-state reaction method. The effect of Ca2+ substitution amount on the phase composition, microstructure and microwave dielectric properties of Zn1-xCaxTi0.6Zr0.4Nb2O8 ceramics was investigated by X-ray diffraction, scanning electron microscopy and network analysis, respectively. The results show that Ca2+ substitution of Zn2+ leads to the formation of the second phase of CaNb2O6, the content of ZnTiNb2O8 phase decreases and the content of CaNb2O6 phase increases with the increase of Ca2+ content, leading to the decrease of dielectric constant εr and quality factor Q×f of Zn1-xCaxTi0.6Zr0.4Nb2O8 ceramics, and the temperature coefficient of resonant frequency τf shifting to a positive direction. The optimum microwave dielectric properties (i.e., εr=30.42, Q×f=47280GHz, τf=-25.37×10-6/℃) are obtained when Zn1-xCaxTi0.6Zr0.4Nb2O8 ceramic is sintered at 1140℃ as x=0.3. © 2019, Editorial Department of Journal of the Chinese Ceramic Society. All right reserved.
引用
收藏
页码:330 / 335
页数:5
相关论文
共 15 条
  • [1] Liu Q., Tang B., Li H., Et al., Piezo Acoustoopt, 1, pp. 64-67, (2015)
  • [2] Lin W.Y., Speyer R.F., Hackenberger W.S., Et al., Microwave properties of Ba<sub>2</sub>Ti<sub>9</sub>O<sub>20</sub> doped with zirconium and tin oxides, Cheminform, 82, 5, pp. 1207-1211, (2010)
  • [3] Laishram R., Gaur R., Singh K.C., Et al., Control of coring effect in BaTi<sub>4</sub>O<sub>9</sub> microwave dielectric ceramics by doping with Mn<sup>4+</sup>, Ceram Int, 42, 4, pp. 5286-5290, (2016)
  • [4] Pamu D., Rao G.L.N., Raju K.C.J., Enhanced microwave dielectric properties of (Zr<sub>0.8</sub>, Sn<sub>0.2</sub>)TiO<sub>4</sub> ceramics with the addition of its own nanoparticles, J Am Ceram Soc, 95, 1, pp. 126-132, (2012)
  • [5] Kawashima S., Nishida M., Ueda I., Et al., Ba(Zn<sub>1/3</sub>Ta<sub>2/3</sub>)O<sub>3</sub> ceramics with low dielectric loss at microwave frequencies, J Am Ceram Soc, 66, 6, pp. 421-423, (2010)
  • [6] Wang L., Liu Y., Bull Chin Ceram Soc, 33, 1, pp. 103-106, (2014)
  • [7] Kim D., Hong K.S., Phase relations and microwave dielectric properties of ZnNb<sub>2</sub>O<sub>6</sub>-TiO<sub>2</sub>, J Mater Res, 15, 6, pp. 1331-1335, (2000)
  • [8] Huang C.L., Huang S.H., Lee R.Z., The microwave dielectric materials of (Zn<sub>1-x</sub>Mg<sub>x</sub>)TiNb<sub>2</sub>O<sub>8</sub> for electroceramics devices applications, Key Eng Mater, 547, pp. 49-55, (2013)
  • [9] Zhou D., Li W.B., Xi H.H., Et al., Phase composition, crystal structure, infrared reflectivity and microwave dielectric properties of temperature stable composite ceramics (scheelite and zircon-type) in BiVO<sub>4</sub>-YVO<sub>4</sub> system, J Mater Chem C, 3, 11, pp. 2582-2588, (2015)
  • [10] Fang Z., Tang B., Si F., Et al., Temperature stable and high-Q microwave dielectric ceramics in the Li<sub>2</sub>Mg<sub>3-x</sub>Ca<sub>x</sub>TiO<sub>6</sub>, system (x=0.00-0.18), Ceram Int, 43, 2, pp. 1682-1687, (2017)