Bioactive 3D-printed chitosan-based scaffolds for personalized craniofacial bone tissue engineering

被引:1
|
作者
Yousefiasl S. [1 ]
Sharifi E. [2 ]
Salahinejad E. [3 ]
Makvandi P. [4 ]
Irani S. [5 ]
机构
[1] School of Dentistry, Hamadan University of Medical Sciences, Hamadan
[2] Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan
[3] Faculty of Materials Science and Engineering, K. N. Toosi University of Technology, Tehran
[4] Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, Pisa
[5] Dental Research Centre, Oral Pathology Department, Dental Faculty, Hamadan University of Medical Sciences, Hamadan
来源
Engineered Regeneration | 2023年 / 4卷 / 01期
关键词
Bioactivity; CAD/CAM; Maxillofacial reconstruction; Pore; Stem cells;
D O I
10.1016/j.engreg.2022.09.005
中图分类号
学科分类号
摘要
Regeneration of craniofacial bone defects is a key issue in the bone regeneration field. Hence, novel treatment strategies, such as tissue engineering using porous scaffolds, have been developed. An ideal tissue-engineered scaffold for bone tissue regeneration should possess pores to facilitate nutrients transmission and support reparative tissue ingrowth, bioactivity for osteoconduction and osseointegration, and biocompatibility to improve cell attachment, proliferation, and extracellular matrix formation. In the present study, we manufactured chitosan-based hydrogels substituted with alginate with optimized properties by extrusion-based three-dimensional (3D) printing. 3D printing of the scaffolds enables the designing and developing of complex architectures for craniofacial reconstruction using computer-aided design (CAD). Different ratios (2.5, 5, and 10%) of hydroxyapatite were added to the hydrogel, printed, and subsequently lyophilized to augment the physical and biological characteristics of the scaffolds. Hydroxyapatite incorporation into the chitosan-based scaffolds increased the porosity and pore size of the printed scaffolds. In addition, the presence of hydroxyapatite amplified apatite formation and decreased the size of formed apatite crystals. All the scaffold samples showed biocompatible properties and did not have toxicity toward rat bone marrow mesenchymal stem cells. Furthermore, the scaffolds containing 5% w/w hydroxyapatite exhibited significant growth in cell viability compared to the control. Overall, it is concluded that chitosan-based scaffolds adorned with hydroxyapatite are considerable for regenerating craniofacial bone defects. © 2022
引用
收藏
页码:1 / 11
页数:10
相关论文
共 50 条
  • [1] Chitosan-based 3D-printed scaffolds for bone tissue engineering
    Yadav, L. Roshini
    Chandran, S. Viji
    Lavanya, K.
    Selvamurugan, N.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 183 : 1925 - 1938
  • [2] Biological evaluation of 3D-Printed chitosan-based scaffolds for tissue engineering
    Behrooznia, Zahra
    Nourmohammadi, Jhamak
    Mohammadi, Zahra
    Shabani, Fatemeh
    Mashhadi, Rahele
    CARBOHYDRATE RESEARCH, 2025, 551
  • [3] Chitosan-based scaffolds for bone tissue engineering
    Levengood, Sheeny K. Lan
    Zhang, Miqin
    JOURNAL OF MATERIALS CHEMISTRY B, 2014, 2 (21) : 3161 - 3184
  • [4] 3D-printed bioactive scaffolds from nanosilicates and PEOT/PBT for bone tissue engineering
    Carrow, James K.
    Di Luca, Andrea
    Dolatshahi-Pirouz, Alireza
    Moroni, Lorenzo
    Gaharwar, Akhilesh K.
    REGENERATIVE BIOMATERIALS, 2019, 6 (01) : 29 - 37
  • [5] 3D-Printed Chitosan-Based Hydrogels Loaded with Levofloxacin for Tissue Engineering Applications
    Koumentakou, Ioanna
    Noordam, Michiel Jan
    Michopoulou, Anna
    Terzopoulou, Zoi
    Bikiaris, Dimitrios N.
    BIOMACROMOLECULES, 2023, 24 (09) : 4019 - 4032
  • [6] Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration
    Solmaz Zakhireh
    Jaleh Barar
    Khosro Adibkia
    Younes Beygi-Khosrowshahi
    Marziyeh Fathi
    Hossein Omidain
    Yadollah Omidi
    Topics in Current Chemistry, 2022, 380
  • [7] Bioactive Chitosan-Based Organometallic Scaffolds for Tissue Engineering and Regeneration
    Zakhireh, Solmaz
    Barar, Jaleh
    Adibkia, Khosro
    Beygi-Khosrowshahi, Younes
    Fathi, Marziyeh
    Omidain, Hossein
    Omidi, Yadollah
    TOPICS IN CURRENT CHEMISTRY, 2022, 380 (02)
  • [8] 3D-printed photoluminescent bioactive scaffolds with biomimetic elastomeric surface for enhanced bone tissue engineering
    Chen, Mi
    Zhao, Fujian
    Li, Yannan
    Wang, Min
    Chen, Xiaofeng
    Lei, Bo
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 106
  • [9] Application of 3D-Printed, PLGA-Based Scaffolds in Bone Tissue Engineering
    Sun, Fengbo
    Sun, Xiaodan
    Wang, Hetong
    Li, Chunxu
    Zhao, Yu
    Tian, Jingjing
    Lin, Yuanhua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (10)
  • [10] Oxygen Plasma Treatment on 3D-Printed Chitosan/Gelatin/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Lee, Chang-Min
    Yang, Seong-Won
    Jung, Sang-Chul
    Kim, Byung-Hoon
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (04) : 2747 - 2750