Enhanced hole transport in benzoic acid doped spiro-OMeTAD composite layer with intergrowing benzoate phase for perovskite solar cells

被引:0
作者
Guan L. [1 ]
Zheng Z. [1 ]
Guo Y. [1 ]
机构
[1] State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Material Building D, 800 Dongchuan Road, Minhang District, Shanghai
来源
Guo, Yiping (ypguo@sjtu.edu.cn) | 1600年 / Elsevier Ltd卷 / 832期
基金
中国国家自然科学基金;
关键词
Benzoic acid; Hole-transport layer; Oxidation of spiro-OMeTAD; Perovskite solar cells;
D O I
10.1016/j.jallcom.2020.154991
中图分类号
学科分类号
摘要
Spiro-OMeTAD is one of the widely used hole-transfer materials for designing high-performance perovskite solar cells. It is reported that acid doping is an efficient and facile method to increase the conductivity of spiro-OMeTAD and accelerate its oxidation process. Besides, investigating the morphologic controlling mechanism of spiro-OMeTAD films would give a novel insight in designing the hole-transport layer (HTL) and further clarify the mechanism of acid additives. In this work, the effect of benzoic acid on the spiro-OMeTAD oxidation is studied, where the formation of the lithium benzoate phase can decrease the size of hollows in the spiro-OMeTAD film. By doping benzoic acid, the HTL exhibits faster oxidation process and better hole transfer ability. Meanwhile, the hysteresis of the perovskite solar device based on the HTL is effectively reduced via optimizing the doping content, with an improved power conversion efficiency reaching up to 16.26% under standard AM 1.5G illumination. © 2020 Elsevier B.V.
引用
收藏
相关论文
共 35 条
[1]  
Liu T., Hu Q., Wu J., Chen K., Zhao L., Liu F., Wang C., Lu H., Jia S., Russell T., Zhu R., Gong Q., Mesoporous PbI2Scaffold for high-performance planar heterojunction perovskite solar cells, Adv. Energy Mater., 6, (2016)
[2]  
Wang F., Yu H., Xu H., Zhao N., HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells, Adv. Funct. Mater., 25, pp. 1120-1126, (2015)
[3]  
Chen H., Ye F., Tang W., He J., Yin M., Wang Y., Xie F., Bi E., Yang X., Gratzel M., Han L., A solvent- and vacuum-free route to large-area perovskite films for efficient solar modules, Nature, 550, pp. 92-95, (2017)
[4]  
Wu T., Wang Y., Li X., Wu Y., Meng X., Cui D., Yang X., Han L., Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules, Adv. Energy Mater., (2019)
[5]  
Tan H.R., Jain A., Voznyy O., Lan X.Z., de Arquer F.P.G., Fan J.Z., Quintero-Bermudez R., Yuan M.J., Zhang B., Zhao Y.C., Fan F.J., Li P.C., Quan L.N., Zhao Y.B., Lu Z.H., Yang Z.Y., Hoogland S., Sargent E.H., Efficient and stable solution-processed planar perovskite solar cells via contact passivation, Science, 355, pp. 722-726, (2017)
[6]  
Ma Z., Xiao Z., Zhou W., Jin L., Huang D., Jiang H., Yang T., Liu Y., Huang Y., Efficient CH3NH3PbI3-x (SeCN) x perovskite solar cells with improved crystallization and defect passivation, J. Alloys Compd., 822, (2020)
[7]  
Fu Y., Wu T., Wang J., Zhai J., Shearer M.J., Zhao Y., Hamers R.J., Kan E., Deng K., Zhu X.Y., Jin S., Stabilization of the metastable lead iodide perovskite phase via surface functionalization, Nano Lett., 17, pp. 4405-4414, (2017)
[8]  
Kim M., Kim G.-H., Lee T.K., Choi I.W., Choi H.W., Jo Y., Yoon Y.J., Kim J.W., Lee J., Huh D., Lee H., Kwak S.K., Kim J.Y., Kim D.S., Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells, Joule, 3, pp. 2179-2192, (2019)
[9]  
Kojima A., Teshima K., Shirai Y., Miyasaka T., Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131, pp. 6050-6051, (2009)
[10]  
Im J.-H., Chung J., Kim S.-J., Park N.-G., Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3, Nanoscale Res. Lett., 7, pp. 353-359, (2012)